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Objectives

Haptic interfaces, natural language and gestures have traditionally been used to
interact with robots. However, in last years, new modalities of interaction have
emerged, like EMG and EEG interfaces. The current scenario is one of transition from
the industrial workplace towards increasing interaction with the human operator in
other scenarios. This means that interaction with humans is expanding from a mere
exchange of information (in teleoperation tasks) and service robotics to a close
interaction involving physical and cognitive modalities. It is in this context where
multimodal interfaces combining different kind of interaction modalities play a crucial
role. Multimodal interfaces increase usability (the weaknesses of one modality are
offset by the strengths of another) and they have implications for accessibility (a well-
designed multimodal application can be used by people with a wide variety of
impairments).

This workshop will provide an overview of the most recent advances about human-
robot multimodal interfaces and it will explore new directions in the field, with a
particular focus on interfaces for disabled people. The workshop will form an ideal
environment for the emerging community to meet and exchange ideas.
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From Haptic Human-Human to Human-Robot Interaction -
Challengesand Selected Results

Angelika Peer, Zheng Wang, Jenglldampf, and Martin Buss
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Abstract— Adding physicality to virtual environments is con-
sidered a prerequisite to achieve natural interaction behavior
of the user and can be achieved by usage of appropriately
designed and controlled haptic devices, as well as by im-
plementation of sophisticated haptic rendering algorithms.
While in the past a variety of haptic rendering algorithms
for the interaction with passive environments were developed,
the interaction with active environments like the physical
interaction with a virtual character is rarely investigated. Such
kind of physical interactions pose a number of new challenges
compared to the interaction with passive environments as the
human expects to interact with a character that shows human-
like behavior, i.e. it is able to estimate human intentions,
to communicate intentions, and to adapt its behavior to its
partner. On this account, algorithms for intention recognition,
interactive path planning, and adaptation are needed when
implementing such interactive characters. In this paper two
different approaches for the synthesis of interactive behavior
are reviewed, an engineering-driven and an experimental-
driven approach. Following the experimental-driven approach
haptically interacting partners are synthesized following a
three step procedure record-replay-recreate. To demonstrate
the validity of this approach it is applied to two prototypical
application scenarios, handshaking and dancing.

Index Terms—haptic human-robot interaction,
human-robot interaction, haptic rendering

physical

I. INTRODUCTION

feedback and are ceiling, floor, desktop, or body-grounded.
Most devices, however, have been designed and optimized
for a specific application only. Thus, several devices would

be necessary to cover the various types of interactions
required when realizing immersive virtual environments.

When bringing physicality to virtual environments high-
quality haptic rendering algorithms are needed. Haptic ren-
dering has been a very active field of research and a variety
of algorithms for interaction with passive environments
have been developed in the past. This includes geometric
rendering algorithms for single point contact with polygonal
[3], [4], parametric [5], and implicit surfaces [6] or volumet-
ric objects. Advanced versions also consider point interac-
tion with deformable objects, line interaction or interaction
between polygons. Recently, also direct haptic rendering
from measurements has been studied intensively [7]. Beside
rendering algorithms for kinesthetic feedback also a number
of texture rendering algorithms exist, see [8], [9]. Interested
readers please refer to [10] for a comprehensive overview
of state-of-the-art haptic rendering algorithms.

While all the aforementioned rendering algorithms assume
interactions with passive environments only, rendering of
active environments has been rarely studied in literature.
Simulation of actuated systems or virtual characters that hap-

While today’s virtual environments are able to provide tically interact with the human user are typical examples for
high quality visual and auditory feedback, most of themsuch active environments. In literature only a few examples
still lack physicality, the state or quality of being physical for such systems exist, e.g. [11], where an actuated car door
and follow physical principles: People can penetrate intds rendered.
walls, objects, and characters, lift objects without feeling We aim for rendering a virtual, interactive character
their weight, stroke objects without feeling their texture andlike a handshaking or dancing partner. Compared to haptic
socially interact with characters, without feeling forces whenrendering of passive environments and the rendering of

being in physical contact.

actuated systems, rendering of a virtual character that can

Since virtual environments are used for simulation, train-physically interact with humans poses a variety of new

ing, rehearsal, and virtual gatherings, they should provokehallenges, because the human expects to interact with a
natural interaction behavior of the user to attain their ex-character that shows human-like behavior, i.e. it is able to
pected effect. Physicality is considered one of the mairestimate human intentions, to communicate intentions, and
prerequisites to achieve this. Thus, high-quality haptic feedto adapt its behavior to its partner. Since human intention
back is desired, which calls for appropriately designed andthe way how the human desires to carry out the task) is
controlled haptic devices, as well as a sophisticated haptihidden in the human mind, it must be inferred by analyzing
rendering algorithms. measured force and motion data. When analyzing this data,
In the past years a variety of haptic interfaces havehowever, we have to call into attention that the human can
been developed and presented in literature, see [1], [2] fochange his behavior by either changing his execution plan
an overview. Systems either provide kinesthetic or tactileor by adapting his mechanical impedance. Both, execution



plan and mechanical impedance can significantly vary ovebehavior following a three step procedure record-replay-
time and thus lead to changes in the force and motiomecreate. In the recording phase force and motion signals
data. Intelligent intention recognition algorithms, however,resulting from physical interaction of two humans are

need to be able to distinguish between these two casesgcorded. In the second step, this data is simply replayed
because only then, the behavior of the virtual characteby using a haptic interface. Since, a pure replay lacks
can be adapted as desired by either changing the desird¢lde ability to adapt to the human partner and thus natural
path or the implemented compliance provided by the haptiéinteraction behavior cannot be achieved [20], a third

interface. Taking into account these challenges arising whephase, the recreation phase is introduced which aims at
rendering physical interactions with interactive characterssynthesizing real interactive behavior. The following two

it is clear that this requires modules that are not necessargections will demonstrate this approach for two prototypical

when rendering passive environments or actuated systemapplication scenarios, handshaking and dancing.

namely modules for intention recognition, interactive path

planning, and adaptation. I11. APPLICATION SCENARIO: HANDSHAKING

First approaches in this direction can be found in the In [21] we studied handshaking with a virtual, visually
field of physical human-robot interaction where a robot isand haptically rendered character, see Fig. 1. So far, only
supposed to assist the human operator while jointly performfew authors investigated handshaking: In [29] the first tele-
ing a joint transporting or social interaction task. Startinghandshake using a simple one degree-of-freedom (DOF)
from purely passive followers as presented in [12], controldevice was created while [30] generated handshake anima-
schemes with varying impedance parameters [13], [14] antions from a vision system. Remarkably, only few people
controllers that introduce additional virtual constraints [15]viewed handshaking from a force/motion interaction aspect:
were developed, leading finally to active robot partnersn [31] the authors took the oscillation synchronization
that can estimate human intention [16]-[18] and based ompproach to realize human-robot handshaking and in [32]
these estimations change their interaction behavior by takinthe authors focused on the approaching and shaking motions
different roles [19]. of a handshaking robot.

In the following section we will present our approach to
realize a haptically interacting partner, while Sections Ill and
IV exemplarily demonstrate this approach for two prototyp-
ical physical interaction tasks, handshaking and dancing.

Il. APPROACHES TO SYNTHESIZE INTERACTIVE
BEHAVIOR

When synthesizing interactive behavior, two completely@®
different approaches can be adopted: an engineering: 9
driven and an experimentally-driven approach. A typical
engineering-driven approach implements control strategies
which are e.g. based on heuristics, optimality criteria or
stability criteria. One of the drawbacks of such an approach In the following sections we will review our approach
is that it does not necessarily guarantee that the resulting® synthesize an interactive handshaking partner following
interaction patterns are human-like which complicates théhe three-step procedure record-replay-recreate delineated
recognition of the virtual partner’s intention, the building of above.
its mental model and thus prediction of its action. Beside

. o : . A. Record
this, also natural communication of ones own intentions can
be affected by the usage of this approach as the artificial In the recording phase in total a number of 900 human-
virtual partner often lacks the ability to understand andhuman handshakes of 24 male college students were per-
interpret them. formed and position and force data was recorded during

These limitations can be overcome by an experimentallyinteraction, see Fig. 2. To measure the interaction force
driven approach which aims at i) recording data duringspecial data gloves [33] were used while position was
human-human interaction and using this data to rep]a)lfeCOTdEd by an optical tracking system. No instructions how
[20] and synthesize interactive behavior [21], [22], or ii) to perform the handshakes were given to achieve natural
by recording and studying human-human interaction andnteraction behavior.
transferring knowledge gained from the analysis of this dataB. Replay

to human-robot interaction as recently explored in [18],
[23]-[28]. In the replay phase trajectories recorded during human-

In the EU project Immersente we adopt the human handshakes were replayed by the haptic interface
experimentally-driven approach to synthesize interactive/iSHaRD10 [34]. To improve naturalness of interaction, a
compliant controller was additionally used to imitate human
Lwww.immersence.info arm stiffness, see Fig. 3. If the human performs similarly

Fig. 1. Handshaking with a virtual interactive character
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Fig. 2. Recording of human-human handshakes

Fig. 4. Recreation of human-human handshakes using an HMMitbase
handshaking controller
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—
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Llaw abstracts them into symbols and feeds them into an Hidden-
Admjttance k| Position | Markov-Model(HMM)-based intention recognition module
r ;ﬂig‘ﬁg‘ Controller [ ¢~ Robot which outputs an estimate of the current human intention.
) Two HMMs are defined for the estimator relecting the two
f x opposite rolesactive and passive. Active indicates that the
| Human human is trying to lead the handshake, while passive means

the human is following the lead of the robot. Depending on
Fig. 3.  Replay of human-human handshakes using a positiontbasethe estimated intention the robot is programmed to take op-
admittance controller with time varying parameters posite roles to the human partner by generating appropriate

reference trajectories and altering the displayed compliance

. . i he impl ion law. E i
at each handshake, the same desired trajectory leads ?él:cordmg to the imp eme’.‘ted adaptatlc_)n aw. xpe_nments
showed that the roles active and passive are not fixed for

similar force pro_filc_—:-s for each ha_ndshake :_;md hence providet%e whole interaction, but that partners switch between
the human a similar handshaking experience compared tI%em several times. Using the aforementioned approach the

igio?ggjan{uﬁrsnanrocvﬁjz dV\{[EZ;ethrﬁarr:%fe;?S;e;rr]?]se;tr(;ry(\)A(/) umber of switching events between the states active and
i » P P P 9908assive can be easily modified by changing the thresholds

repetitors, this replay strategy leads to natural handshake f the discrete HMM. In doing so, a more or less dominant

m?g\:g\é?i\r/’eIthgiz;;ukggaamseTttigggt?ﬁgnag{itre?gzg;?e rfutlrlleinteraction partner can be realized. Interested readers are
! y feferred to [21] for a detailed description of the implemented

reference trajectory, therefore the robot can only playback : .

X . : . . algorithms and achieved results.

motions as predefined, with the human input applied on

top of it. This is clearly different from human-human IV. APPLICATION SCENARIO: DANCING
handshaking, where the arms can provide compliance during |, 135] we studied dancing as haptic interaction scenario,
interaction, while in the human mind different strategies canygq Fig. 5. Like handshaking, dancing requires a physical
be selected about whether to adapt to the partner or Not,, hjing between partners, but differs from handshaking as
On this account, an advanced more interactive handshaking gominance is by definition distributed unequally between
controller has been developed. partners, ii) the basic form of dancing steps is predefined,
and iii) dancing figures represent cyclical movements.

Several studies concerning the analysis of human be-

To synthesize an interactive behavior of the virtual hand-havior while dancing are known from literature. In [36]
shaking character we propose a double-layered contrahe sensimotory coordination is examined while dancers
scheme consisting of a low-level and a high-level con-were performing small-scale tango steps. In [37] the haptic
troller, see Fig. 4. The low-level controller (LLC) imple- coordination between dancers with PHANToOMs is investi-
ments position-based admittance control and the high-levejated. Finally, [38], [39] built a female dancing robot which
controller (HLC) updates the admittance parameters anébllows the male and tries to estimate the next dancing step
adapts the reference trajectory depending on the actual estind adapts the step size on demand [40]. Our aim was to
mated human intention. Interactive behavior is consequentlimplement a haptic enabled male dancer that imitates the
achieved by three modules, the intention estimation modulegehavior of a real human partner. In contrast to female
the adaptation law, and the trajectory planning algorithm. dancers which require the ability to understand intentions,

Using measured force and position data an online pamale dancers need the ability to communicate intentions and
rameter estimator identifies human behavior parametersp adapt to their partner's behavior.

C. Recreate



al. [43]. It allows to synthesize a nonlinear system dynamics
based on a given trajectory

wlk + 1] = z[k] + f([k]) 1)

while reducing the amount of data points needed for a typical
dancing scenario.

Thus, only a few hundred parameters need to be stored,
which results in a tremendous reduction of memory re-
quirements. A further advantage is that dancing steps are
parametrized and thus can easily be transformed in size and
shape. This attribute will be utilized in the recreation phase
described below.

virtual male
Fig. 5. Dancing with a virtual interactive character vaoory 12ex” [ vamonry | fom
synthesis O controller é oy
mass
In order to achieve this, again the three step approach ,.___. chaptic e 1o [ fro
record-replay-recreate was adopted as illustrated in the fol- ! rereee :
lowing subsections. R GRIGGRECTEEEEEEEPPEERREREEEPREEEREE R RPRELPREER e, '
A. Record Fig. 7. Replay of human-human dancing trajectories using a trajectory

i i . i generator
In the recording phase semi-professional dancing couples

were recorded using a motion-capture system, see Fig. 6. As
dance the discofox has been chosen as it allows to have on!}ls
two interaction points. In order to measure the interactionl_h
force, special adapters were constructed which connect tw,

handles over a 6 DOF force-torque sensor and consequently

allow dancing-like hand postures. zlk + 1] = z[k] + g(ulk], z[k]). (2

Switching between different dancing steps is achieved by
ing different dynamic subsystems for each dancing step.
is can be simply realized by adding an input sigadib

e nonlinear system dynamics

After segmenting the recorded trajectory and introducing
different levels of the input signal, synthesis can be easily
performed by applying the appropriate signal level. When
switching between dancing steps they are smoothly faded
into each other by means of the attracting vector fields.

Since replay of generated trajectories results into partners
which lack the ability to estimate human intentions and to
adapt to their partner, the recreation phase was used to im-
plement an interactive virtual partner which estimates human
intention from measured interaction forces, see Fig. 8, and
adapts the step size depending on them by applying the
following transformation

Fig. 6. Recording of dancing couples y[k] _ a[k]w[k} + d[k] ©)

to x[k] in (2). For a detailed description of the implemented

B. Replay . algorithms and achieved results please refer to [35].
In the replay phase the recorded motion data was replayed
on a mobile robotic platform [41] equipped with two robotic .. ABPIAON e
arms [42]. The mobile platform was position controlled and | vituaimae
the robotic arms were programmed to follow the measured |  [Taecoy |=:t” rajoctory | fusn
B - . LERLETEEY —O— L
positions of left and right hand recorded during human- [ generaer controller : oy
human interaction. Adopting this approach leads to a fully Lo ese |
. . . haptic T fo_en H
dominant male dancer, which does not estimate human ;=== inerface [~77" female == - ¢-

intentions and thus cannot adapt to the female partner.

C. Recreate Fig. 8. Recreation of human-human dancing trajectories using an adaptive

To recreate the behavior of an interactive dancing partneifajectory generator
we implemented the vector field approach of Okada et

10
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Abstract—In this article, the mechanical and electronic design
of a Multifinger haptic interface is described. This interface can
be used for bimanual manipulation of virtual scenarios. Due to
the complexity of the system, we have decided to design a
modular device. The basic element is the haptic interface for one
finger, and both the electronic and the mechanical design are
independent for each module. A distributed architecture has
been developed so as to be able to simulate virtual manipulation
scenarios by using more than one haptic devices for bimanual or
collaborative tasks. The designed haptic interfaces is called
MasterFinger-2 (MF-2). The user inserts his thumb and index
fingers to manipulate virtual objects. An application calculates
the force exerted to the objects, and these forces are reflected to
the user by the haptic device. Some examples of bimanual
manipulation of virtual scenarios are shown in this article.

Index Terms— Bimanual, haptic, virtual
manipulation, advanced manipulation.

multifinger,

1. INTRODUCTION

Haptic devices provide the user with force and tactile
information during manipulation or exploration of virtual
environments [1]. Devices that feedback tactile and force
sensation to the user, have been used in teleoperation, design
of virtual reality environments, educational training and so
on[2].

Fig.1. MasterFinger-2 is made up of two modules. Thumb and index fingers
are inserted into a thimble respectively.
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A great advancement has been done in the manipulation of
virtual objects with only one contact point that simulates
palpation or exploration of a virtual object surface. However,
at least two contact points per hand are required in advanced
manipulation tasks for grasping and properly handling objects
[3]. Relevant examples of this advanced manipulation can be
found in telerobotics [4] and surgical applications [5][6][7].

In this paper, a haptic device interface called MasterFinger-
2 (MF-2) is presented. A setup for bimanual and cooperative
tasks is also described. The setup consists of two MF-2
devices that allow users to manipulate the virtual environment
by using his index and thumb fingers of both hands. The
resulting workspace of this system is explained. It is also
described the distributed architecture that has been designed
for haptic scenarios development and some examples of
bimanual virtual manipulation are described.

Il. HAPTIC DEVICE DESCRIPTION

The designed haptic interface can be managed by the user
by inserting his index and thumb fingers in two adjustable
thimbles that have been designed for that purpose, more
details about this thimble can be found at [10]. These
thimbles are connected to a mechanical structure with seven
actuators, three actuators per finger plus and additional
actuator that allows rotating all the mechanical structure on a
vertical axis. The mechanical design has been conceived with
the purpose of facilitating object manipulation, in particular,
for grasping objects. This mechanism is based on a modular
configuration in which each finger has its own mechanical
structure and electronic components. Figure 1 shows the
haptic device developed which is called MasterFinger-2

(81[9].

A. Mechanical Design

The two-finger haptic device has 7 actuators and 13
Degree of Freedom (DoF) in total. Each finger has its own
mechanical structure with 6 DoF, the firsts 3 of them actuated
and the last 3 only measured. This configuration allows any
position and orientation for the fingers into the device
workspace. The three actuators are located close to the base
device in a serial-parallel configuration. It allows reflecting



forces in any direction with a small inertia. Actuators are
linked to a five-bar mechanical structure which is connected
to a gimble with 3 rotational DoF. Finally, the last gimble
rotation axis is linked to the thimble.

Thimble position is calculated from the encoders included
in the actuators, orientation is obtained from three absolute
encoders, which are placed in the gimbal rotational axis. The
three rotational axis of the gimbal intersect at the user’s
fingertip. This geometrical configuration avoids torque
reflection, meaning that only forces are reflected to the user’s
finger. The thimble and the gimbal are shown in Fig. 1.

The thimble has been designed so that it can be adjusted
to any user finger by adjusting some screws. Each thimble
incorporates four contact sensors. These contact sensors are
used to estimate the force exerted by the user during the
virtual object manipulation. This information contains some
inaccuracy since contact sensors only detect normal forces.
Tangential forces are estimated by contact sensors located in
the sizes of the fingers, details about the contact sensor
configuration can be found at [10].

Fig.2. Bimanual configuration and resulting workspace.

B. Controller

MasterFinger-2 has a modular and scalable design. The
hardware needed to control one of these devices is based on
three different electronic boards:

— Acquisition system board which serves as an interface
between the controller and the mechanical parts and sensors.
This board not only acts as a bridge between the encoders and
the control board but also translates the analog signals into
digital data.

- Power electronic board to feed the motors and measure the
current.

— A Virtex-5 FPGA (ML-505 Board) that has the low level
control of the system programmed on the PowerPC.
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The signals and measurements used for controlling the system
are mainly the position of the fingertips and the current of the
motors. Every motor has an encoder in order to determine its
angular position. The end position and orientation of each
finger can then be calculated. Current of the motors is low in
order to control direction and the amount of force exerted over the
fingers.

This controller also computes gravity pre-compensation and
includes an antiwindup subsystem as a safety measurement for
human users.

The PowerPC runs at the low level controller under a VxWorks
real time operating system to assure a constant frequency rate.
Only kinematics and Jacobian calculus have been moved to the
Scenario Server due to high computational cost.

C. Distributed Architecture for Haptic Scenarios
Development

MasterFinger-2 is based on a distributed control
architecture this architecture allows the user to use as many
MasterFingers and Graphic servers as he might need to
interact with virtual objects. The designed architecture is
described in Fig.3. It consists of four different components:
the haptic interface (MF-2), the control module of the haptic
device, the scenario server, and the graphic server.

The mechanical structure and the control module have been
described in the previous section, we will now briefly describe
the other two components of the designed architecture: The
Scenario Server and the Graphic Server.

I 1 Foren [E18.) &
Comlrod Pl wcee
i amalca Lo | (L)
& Jacobdan 4
T ] SCEMARIO SERVER
Saster Finger E Graphic
Communi:aion Ciminnia e ahon
In tewf e Intestace
- N | —
Data it :E!:'rlﬂwrs
Colector |* Updatsi  [* prg.o ""f 8
l O Mg i Lo l'
Colligion Grapsin g h?::sm
Dutecion Dietacior . kel ghor

Fig.3. Distributed architecture scheme for haptic scenarios development .
C.1 Scenario Server

The Scenario Server is responsible for the interaction
between every object in the virtual scenario and the virtual



user’s hand.

The Scenario Server integrates all the data given by the
devices and provides the information needed to the Graphic
Simulators and to the devices. Different modules compose
this server: an interface with the MasterFinger, an interface
with the Graphic Communication Server and the Simulation
Engine.

Fingertips have been modeled as spheres inside the
collision detector module. Diameter of these spheres is 2cm.
This length represents the average size of the distal phalanx
in a real finger. Spheres are used due to its simplicity to be
computed for collision processes. The Simulation Engine also
has one module that evaluates if the user is grasping an
object with one or two hands or if he is just colliding with it.

C.2 Graphic Simulator

The Graphic Simulator is used to show the virtual scenario;
this simulator receives the position and orientation of all the
objects in the scenario and shows them on a screen. The
Graphic Simulator that we designed is an OpenGL application
running on Windows operative system that needs a XML
document with all the objects listed. The object’s list includes
information related to object size, initial position and
orientation, its color, the number of segment for its
representation and the object transparency rate. When running
it receives position data of the objects and of the user (The
hand model representation for the MF-2 only needs the
position and orientation of the index and thumb finger
MasterFinger-2 is mainly used for grasping applications) in
the scenario at a frequency rate of 50 Hz; this rate is enough
S0 as to see objects move fluently.

The simulator can be running on different computers at
once; this is an important functionality for collaborative
scenarios where more than one user needs to see the virtual
scenario from his remote location.

The graphic simulator has two modes of operation. One of
them uses a wired view of the objects so the user can see
through them in the scenario and the fingers are represented
as two points that represent the fingertip. The second one
uses a solid representation of the objects and a hand model.
This last mode of view is much more realistic but less useful
when performing difficult tasks because solid objects occult
part of the scenario implying that the user has to change the
point of view all the time.

D. Communications between Different subsystems of the
Distributed Architecture

Communications between different subsystems is based on
UDP protocol so that users can add as many devices as needed
only by attaching them to an Ethernet port. All the information
exchanged by the devices is filtered at MAC level so that the
Scenario Server is more robust when using an internet
connection. However, common robotics protocols do not
provide complete solutions for teleoperation through Internet,
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there are many applications that require the “Haptic Loupe”
to be in the same segment of a LAN and requires low time
delay. A novel BTP protocol [11] has been designed to
improve performance of bilateral flow tasks for real-time
robot teleoperation, it can be easily integrated into
sophisticated control algorithms making systems more
reliable. BTP is an end-to-end congestion protocol whose
main objective is to minimize the round trip tie (RTT) while
maximizing the transmission frequency. To achieve this, it
performs a network congestion control by means of avoiding
congestion signals (Timeouts and packet losses).

E. Examples of virtual manipulation

As was stated before, at least two points of contact per hand
are needed to carry out object manipulation and grasping.
Some experiments where the user interacted with virtual
scenarios were developed with the bimanual mechanical
disposition shown in Fig.4.a.

1) Bimanual Box Manipulation

Design of haptic interfaces for precise bimanual
manipulation should take into account how weight simulations
is implemented when manipulation switches between one and
two hands. The importance of this is apparent in tasks where
the user requires to apply vertical forces to penetrate a surface
with a tool or splice a fragile object using one and/or two
hands.Accurate perception of simulated weight should allow
the user to execute the task with high precision [12].

As a first approach to the bimanual problem, a weight
discrimination scenario was developped. The scenario consists
of a box that can be lifted using one or both hands by a user as
shown in Fig.10.a. The goal of this task is to lift one box with
one hand, and then lift again another box using both hands
(with a different weight) and decide wether it felt heavier or
lighter. Results of this experiment were that similar weight
discrimination performance between unimanual and bimanual
lifting can be observed with real and virtual weights generated
by MF-2. The bimanually lifted virtual weights tended to feel
lighter than unimanually lifted weights. However, the effect
was not as prominent as that observed using real weights;
more details of this experiment can be found at [12].

2) Bimanual or Cooperative Manipulation of a Cylindrical
Object.

In this experiment the scenario consists on a cylinder that
has a sphere that can roll inside as shown in Figl0.b and
Fig.2. The goal of this experiment is trying to equilibrate the
sphere in the middle of the cylinder. To achieve this goal,
there are two possible scenarios: the first one is carried out by
just one person by using both hands and the second one is
performed by two people (each user using his preferable
hand).

The interest of the cooperative scenario is by means of
knowing what the other user (which can be placed in a
different room) is intending to do and try to coordinate



movements with no more communication between them than
just forces and visual information to achive a common goal.

(1
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During this experiment it was seen that MasterFinger-2
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bimanual tasks due to its considerably large workspace.

Most of the haptic devices in market provide the user with
just a contact point to do virtual manipulation tasks. The
designed haptic device provides the user with two points of
contact per hand, this permits a wider variety of manipulating
object’s tasks and grasping simulations.
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Abstract—Human-Machine interfaces constitute a key factor
to guarantee the effective use of technological equipment. In
the field of image guided surgery and surgical robots, the
availability of an adequate interaction means determines the
suitability or not of a given technological aid. This work
focuses on the problems surgeons find in planning and
executing a robot assisted intervention. Analyzing the potential
of computer graphics, together with the surgeons needs during,
first, the planning and later on the development of a surgical
intervention, the specifications and the implementation of an
interface is described. In the design of this interface, main
attention has been put on the gesture and attention capabilities
surgeons can devote to the interface.

I. INTRODUCTION

G raphical interfaces are very common in different fields
of Human-Machine interaction, being the medical field

an area in which they have a significant relevance.
Graphical information can complement the semantic
contents of control orders, especially when dealing with
robotic systems. Free hand interfaces are of special interest
in the surgical field since surgeons have their hands busy
with instruments and the gloves they wear constitute an
additional inconvenience to deal with classical interfaces.
Most interfaces require physical contact and mechanical
interaction through a master device. They, together with
those interfaces that use gloves for gesture recognition are
unacceptable in the surgical environment.

Free hand operation is usually related to interaction
systems relying on oral interfaces. However, although voice
communication can be very useful in some application
areas, it can result inefficient in others due to its limited
semantics, when restricted to a short vocabulary or reduced
set of commands. These limitations affect even more in
robot assisted orthopedic surgery, where stronger interaction
requirements appear. This kind of surgery can take
advantage of systems operating with virtual fixtures (VF),
which constitute computer tools that alleviate surgeons from
the pressure they suffer in some interventions and to
facilitate their work. VF are useful, either to protect critical
areas or to assist surgeons in trajectory guidance. VF have to
be defined by the surgeon a priori, or even on-line, if the
interface offers this facility.
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Referring to oral communication, although its use in MIS
has proved to have some limitations due to the sensitiveness
to the speaker’s emotions, some efforts have been done to
make oral recognition independent of stress, fatigue or other
causes of voice modulation. In [1] some robustness is
achieved using a high dimensional acoustic feature space.
Nevertheless, referring to surgical robots, only simple
operations have been reported, as camera guidance in
laparoscopic surgery, using oral orders. In [2] a study is
done on pros and cons of current interfaces and their
suitability in surgery, considering not only the need, or not,
of the surgeon hands to interact, but also the attention the
interface requires from the user. Among existing interface
techniques, gestures constitute an alternative means to
communicate with a machine in a natural and intuitive way.
A multimodal system is described in [3] combining oral
local communication to guide the camera with simple
qualitative orders; a mobile interface that offers a Graphic
User Interface (GUI) that can even be controlled remotely;
and finally a remote interface conceived for an experienced
surgeon that can assist the local physician. The possibility of
focusing the attention to speech only when required is
tackled in [4], based on eye contact and contextual speech
recognition. In [5] the free hand concept is tackled
considering the needs to be solved using gestures: gesture
detection, action generation and the association between
gestures and actions.

To cope with the limitations of the above mentioned
interfaces, and focusing on the needs encountered in robot
assisted surgery, mainly orthopedics, a gesture based
interface system has been developed. This interface
combines two modalities: one semantic, based on the use of
menus, and a second one graphic, which complements the
former by improving its capabilities and efficiency by
reducing the time required to define the actions and orders
to be given.

The developed system is oriented to the control of tools
such as: grippers, scissors, holders, catheters... which are
controlled by electromechanical or robotic systems,
providing a means to operate with more ergonomic control
capabilities. Thus, the main goal of the interface is reducing
tiredness and stress to surgeons and at the same time
increase patient’s safety.

Il. TyrPoLOGY OF COMMANDS WITH GRAPHIC SUPPORT

Some simple orders can be given operating “free-hand”,
by means of oral communication (voice recognition), but
they can become useless to perform guidance tasks in which
the orders necessary for the control of the system have a
much wider pass band than that achievable using oral
commands. Furthermore, oral communication would
become very noisy under these conditions. Other devices



can complement oral information, but for complex orders no
good enough solutions are commonly found.

Alternatively, gesture based orders are very efficient and
intuitive to the user. Gesture, as voice, also constitutes a
natural language. Gesture commands can either rely on a
mechanical support such as joysticks, 6D devices or so, or
operate “hands free”. In this case, either inertial sensors or
those relying on magnetic or optical sensors are considered
[6, 7]. However, in spite of their good performances they
have some drawbacks as they demand sometimes
uncomfortable postures from the user, mainly if the task to
be carried out takes place around complex geometries.

In order to deal with such limitations, a graphical
complement allows the user to rotate, move, approach or
move away the visualized working space, or generate and
edit surfaces within this workspace.

The former actions are oriented to have the best point of
view available at any moment, while the latter is aimed to
generate virtual fixtures that behave as protection surfaces
or as guiding surfaces to help in instrument guidance.

The most common 3D graphical interfaces which allow
the user to move the controlled element in X,Y and Z
directions and to rotate them over these three axes, fig. 1,
are used without much difficulties by users of CAD systems.
However, they become extremely tough to users less
accustomed to such computer systems. Moreover, the
enormous versatility of these interfaces usually brings such
users to desperation, when he or she sees something rotating
undesirably, or when due to bad luck an object rotates
erroneously, or if by mistake a rotation is produced in two
consecutive axes. In these situations, in most interfaces,
there is no way to return to the “stable” initial position
without an enormous effort that takes much time and
requires high attention. AIll these factors produce
unacceptable situations that surgeons cannot admit during
an intervention.

3-D Shape Editor

OF. | Cancel |

Fig. 1 Usual 3D commands in CAD environments

I1l. 3D GRAPHIC COMMANDMENT SYSTEM WITH IMPOSED
CONSTRAINTS TO FACILITATE THEIR OPERABILITY

After a common work together, engineers and surgeons, a
graphical interface has been established which is highly
simplified compared to those used by CAD designers. The
interface provides an easy interaction with a much reduced
menu than those commonly used. This menu, based on flip
flop operating icons, type activated/deactivated, consists of
two independent blocks, which are independently activated.
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They are:

- Visualization block (change of the observation point)
- Commands block, for the generation and edition of
constraints

These constraints are oriented to define or modify the
limitations of the working space during the robotized
actuation of the surgical instruments, with two main goals;
to guarantee patient safety and at the same time reduce the
stress that surgeons suffer when operating close to critical
zones. Fig. 2 shows the interface designed in common
agreement with the medical team. It has been conceived to
be operated by means of gestures.

This gesture based interaction relies on a stereoscopic
vision system developed within the research team, [6] that
locates the operator hand in front of the screen, emulating a
mouse. Besides its location, the system models the hand in
such a way that it can determine two different states: open-
hand or closed-hand. These two states emulate the mouse
click, as well as the double click, with the close-open-close
hand, at speeds that can be adjusted to each user.

The developed system allows the user moving any element
in space and visualizes the sticking point (when closing the
hand). This action is indicated with a yellow point (picking
point). If the picked element has available a constraint in
one degree of freedom (for instance a rotation over a point)
these constraints are visualized with a blue point. Therefore,
with the yellow points-blue points code, the selected object
can be moved, either in the free space or leaning on a point
or an edge.

To improve the efficiency of the vision system (gesture
based mouse) and be able to lock the cursor movement at
the user’s will, a pedal is used that activates the vision when
pressed and deactivates it when released.

In what refers to computer facilities, the interface offers
the user the possibility of generating any kind of constraints.
Thus, the software tools allow the user to generate lines
(straight or curves) that can be used as trajectories, the user
can convert or generate surfaces (flat or curved) and by
aggregation of surfaces the user can configure three-
dimensional limits, which bound the working space that
contains the robot end-effector.
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Fig. 2 Menu used in the graphic interface



IV. REDUCED SET OF COMMANDS FOR INTERACTIVE
SURFACE GENERATION

The accessible working spaces that a surgeon generates
are composed of elemental surfaces that can be further
composed together so as to generate the desired volume.
Later on, they can be modified at the surgeon’s will. This
task, operating in normal conditions in 3D CAD
environments, takes some learning time; a too long and
tough process for non specialized users. The large range of
possibilities these systems offer carry with them the need of
spending great learning and training efforts that most of
health professionals are not prone to undertake.

For these reasons, the interface designed has been
conceived to be very simple and intuitive, allowing the user
to generate all the characteristic restrictions usually needed
in orthopedic surgery. The criterion that has been followed
to generate such constrained spaces is to provide tools to
configure them from surfaces, being these surfaces
generated from generatrix lines.

Under these premises, if it is necessary to define a simple
trajectory corresponding to a cut, the surgeon has to trace a
trajectory over a 3D model (MR, ...) fig. 3a. This trajectory,
using n reference points will generate n-1 segments,
calculated trigonometrically from a space dimension R?, the
composition of which will give us a spline line.

()L [8)

Once the trajectory is described, the surgeon can convert
that line to a plan z, when dealing with straight lines or a
surface otherwise, Fig. 3b. That conversion is provided by
equally increasing the same coordinate value of the n points
of an existing line (duplicating it), and composing the m
segments between them.

T =ax+by+cz=d

The generation of a surface that contains a line constitutes
an undetermined problem, and consequently, it is necessary
to define additional conditions, such as determining a
passing point in space or defining an orientation from which
a growing process starts. In order to simplify this operation,
the developed system presupposes that this surface has to be
formed perpendicular to the visualization plan. This
simplification is possible since it has been observed that
surgeons place the vision plan in a position frontal to the cut
to be done. This assumption is also extended to the election
of the semi plan defined by the generatrix line, since usually
the direction of the cut to be performed is from outside to
inside the screen and any observation has indicated that it
happens in the opposite direction. Anyway, this automatic
assignation of an orientation in the 3D space is equivalent to
an assignation by default, since the user can correct this
initial orientation by “picking” the generated plan by any
point external to the generatrix line (then appearing a yellow
point as indicator). This point can also be moved in space.

These corrections are equivalent to a reconfiguration of
this plan in the 3D space according to its new orientation,
using a single-axis rotational matrix and its movement
configuration and composition.
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Therefore, this semi surface generation is assisted by the
designed interactive interface, since it minimizes the number
of actions to perform, which are tedious and even
unacceptable by qualified personal staff, which do not
belong to the world of geometry and informatics. Once the
semi surface has been traced, the surgeon can convert this
constraint to a bilateral constrain, by clicking the duplication
function and positioning it, if necessary the new surface,
which is parallel to the previous one, fig. 3c.

Usually, this visual protector of the cut to be done, is also
complemented with a new surface, the depth limit. A final
click action over the “grouping” function, forms an
“allowed” work space.

In this way, and through a successive aggregation of
limiting surfaces, it is possible to configure a restricted work
space that impedes the access of the surgical instrument to

the protected parts, when a robot is controlled in
comanipulation mode.
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Fig. 3 a) Frontal view of a line with some passing points
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Fig. 3 b) View of the image with a line that has grown down to the X,Y
axis to become a surface.



Fig. 3 c) Bilateral constrain generated by plane duplication

V. APPLICATION TO THE GENERATION OF VIRTUAL
FIXTURES IN ORTHOPEDIC SURGERY

This interface has been evaluated in the implementation
of different operations in the laboratory, using animal skulls,
Fig. 4, having achieved very precise cuts, Fig. 5.

Fig. 5 Detail of a cut operation
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In maxillofacial surgery, bone reconstruction in oncology
is a good candidate intervention type that can benefit from
this interactive assistance. The procedure consists in
extracting a piece of the tibia bone to graft it in the affected
jaw. In this case, the formation of a cut line can be done in a
much precise way. Using the same defined pattern, both in
the tibia where the bone tissues are extracted and in the jaw
where they are grafted, the extracted tissue can be adjusted
to the shape and size of the volume of the affected jaw, and
thus, the graft fits better.

These VF can be, as well, of utility as a safety protection
over critical elements as can be the facial nerve. For such
applications the benefit of VF is mainly the reduction of
stress that the surgeon suffers when approaching such
elements, and indirectly, gaining in patient’s safety and
efficiency.

VI. EVALUATION OF ACCEPTABILITY

The evaluation of the interface by different professional
staff has provided some inputs to estimate its operability and
acceptability. A significant parameter evaluated has been the
time spent in the definition of a cutting restriction defined
over a plan, as shown in fig. 6, programmed in a previous
planning phase. Two issues are evaluated; first, the
difficulties each operator founds in converting the described
plan or surface into a bilateral space, that is, a corridor
comprised between two surfaces, and second, in defining a
bounding surface that limits the depth of the cut to be
performed. With the commands available in the interface,
shown in fig. 1, managed from gestures, the operation times
obtained from different users are shown in fig. 7. It can be
clearly observed that the learning factor, for task
implementation (not the commands), does not represent a
dramatic time reduction. Thus, it can be seen as an index of
the simplicity in its use.
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Fig. 6 Anatomic image with a restriction plan inserted
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From the conviction that the interface is a critical part of
robot and computer assisted systems, this work has focused
on the needs of a particular kind of robotic or teleoperated
(or comanipulated) systems. The interface has considered a
limited number of actions to be performed with the hand and
has designed an interface that facilitates an ergonomic
operation. Placing and orienting adequately the elements to
be visualized and the movements to be carried out by the
surgeon it is possible to avoid too large turns or rotations,
thus improving ergonomics. In what refers to the required
user’s attention, and thanks to the reduced number of
remaining actions, the identification of the minimum
number of icons and their type, oriented to this application
field, the interaction becomes friendly, intuitive and easy to
learn.

CONCLUSION
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Abstract— These paper provides a brief description of a
multimodal interface for robot controlling. The man-machine
multimodal interface is based on the fusion of visual control,
through electrooculography, and haptic control, using a desktop
device operated with the hand. The paper describes several
control strategies to move a Fanuc robot with the multimodal
interface and some applications are proposed in order to test
the improvement in human-robot communication.

I. INTRODUCTION

Recent technological advances are opening new human-
machine interaction ways. They allow an intuitive interaction
and remove any physical or technical limitation of the
user, providing a more accessible machine control. In this
sense, multimodal interfaces let people improve their ways
of communication with external devices such as computers
or robots.

Multimodality consists of using different ways of human
communication: voice, eyes, gesture or movement, in order
to perform a more natural man-machine communication.
A multimodal interface is the device which mixes these
different ways of communication to achieve the objectives
of multimodality. A typical example of multimodality is a
personal computer, where the use of the mouse and the
keyboard is combined. Nevertheless, there are many other
ways of integrating man-machine communication devices,
for example using pens, sounds, gestures, tactile screens,
voice recognition or even eye recognition [1]-[5].

This paper describes a multimodal human-robot interface
that uses haptic and ocular information. The electrooculog-
raphy technique is used to detect the eyes motion. A desktop
haptic device is used to provide force feedback. Both devices
can be used to control the robot: a Fanuc LR Mate 200iB.
This kind of interfaces are usually used separately in other
works related to man-machine communication.

Haptic interfaces are based on recognizing objects through
touch by transmitting forces, vibrations or movements to the
user. These devices increase the interaction between the user
and the machine by perceiving virtual objects or receiving
feedback forces from the user actions. This technology is
used on many fields such as surgery training or spare time
activities like videogames augmenting the feelings perceived
by the user [4], [6].
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Ocular interfaces consists of obtaining the eye gaze or di-
rection in order to perform all sort of tasks. These devices are
usually easy to use for people with some disability, but also
improve the natural communication with the environment.
This devices can be used in many man-machine interfaces
[71-[10].

The remainder of these paper is organized as follows.
In section II the multimodal interface is described. Section
III explains different strategies for multimodal controlling.
The applications proposed are shown in section IV. Finally,
section V contains some conclusions.

II. HUMAN-ROBOT MULTIMODAL INTERFACE

The architecture of the multimodal interface is shown in
Fig.1. It consists of an ocular interface and a haptic interface.
Both interfaces are connected to a computer where the
control strategies are implemented. The multimodal interface
is used to control a 6 DOF arm robot (right) which is able
to perform a wide range of applications.

A software application to integrate both interfaces has
been developed in C++ language. It has been separated
in two threads, see Fig.2. One thread (thread 1) performs
the communication with the acquisition card that captures
the electrooculographic signals. The other thread (thread 2)
controls the haptic and graphic contexts, executes the control
strategies and controls the robot movement.

The electrooculographic signal is captured at a frequency
of 50Hz per channel. That signal is analyzed and processed
in blocks of 50 samples per channel, so the analysis and
processing frequency will be 1Hz. The haptic device owns
an independent loop with a frequency of 1000Hz. This loop
controls the force feedback in the device.

A. Ocular Interface

The ocular interface uses electrooculography (EOG) to
detect the movement of the eyes. Next, the ocular interface
is briefly described. See [9], [10] for more information.

EOG is based on the fact that the eye acts as an electrical
dipole between the positive potential of the cornea and the
negative potential of the retina. Thus, in normal conditions,
the retina has a bioelectrical negative potential related to the
cornea. For this reason, the rotations of the ocular globe
cause changes in the direction of the vector corresponding
to this electric dipole, Fig.3. The recording of these changes
requires placing some small electrodes on the skin around
the eyes, Fig.3. The EOG value varies from 50 to 3500
V with a frequency range of about DC-100Hz between the
cornea and the Bruch membrane located at the rear of the
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Fig. 2. Multimodal interface threads. EOG interface is managed by the
thread 1; haptic interface, graphic interface, control strategies and robot
communication are managed by the thread 2.
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Fig. 3. Ocular dipole (right part). Position of the electrodes on the face
(left part). 1: ground electrode, 2 and 3 for horizontal movement, 4 and 5
for vertical.

eye. Its behavior is practically linear for gaze angles of
+50°horizontal and +30°vertical.

The ocular interface uses the Nicolet Viking IV D device
and a National Instruments (NI) card to obtain the EOG
signals with a sample frequency of 50 Hz in a computer.

In order to generate the device command, the human
must perform a fast movement of the eyes in the desired
direction and he/she must later return his/her eyes to the
center position. The algorithm to obtain the device command
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Multimodal Interface (left): Haptic Interface (Phantom Omni of Sensable), Control Device (PC), Graphic Interface and EOG Interface (Nicolet

from the eye movement is shown in Fig.4. The phases of this
algorithm are the next:

1) The EOG signals are acquired from the NI card.

2) The moving average is calculated to eliminate the noise
and to obtain a cleaner signal.

3) The derivative is calculated to detect the change in the
eyes direction. If the person looks toward one direction,
the signal abruptly changes. This fast change followed
by a slow fall is detectable by the derivative, generating
a high value (positive and negative) in the moment that
happens.

4) A threshold is used to distinguish the detection of the
eyes movement from noise and/or the signal obtained
when there is not eyes movement. This threshold can
be different for horizontal and vertical movements and
it depends of the human.

5) The maximums and minimums are searched in or-
der to know the direction of the eyes movement. In
the control strategy developed, the max/min/max or
min/max/min sequences are searched.

6) Finally, the direction of the gaze is obtained.

Electrodes impedances must be lower than 50k to assure
the quality of the signals. In the tests, the impedances were
about 30k(? for positive electrodes and about 20k for
negative ones.

The decision algorithm is executed for each channel. The
result will be -1, 0 or 1 that corresponds to left, nothing or
right (down, nothing or up) respectively.

The interface analyzes and processes the eye movements,
while the haptic device button is pressed. Thus the user
can move the eyes freely when he/she wants to generate a
command and the interface comfort is increased.

The accuracy of the algorithm depends on the election
of the thresholds of the signal. As it has been mentioned,
there are two channels: vertical and horizontal. For both
channels, two threshold values are chosen (max and min)
which eliminate all the signal between them and prevent the
algorithm from getting wrong positives. It has been proved
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from the eye movement (left) and evolution of the EOG signal during the
processing algorithm (right).

that the value of these numbers is different depending on
the user. Therefore, a training must be performed before
working with the interface for every user. This training
includes a series of predefined movements of the eye that
allow obtaining the proper threshold for each channel.

The series of training movements consists of looking at
each direction twice in the same order and waiting two
seconds between each movement. If the algorithm does not
work properly, in other words, the direction is not detected,
all the information is saved in an spreadsheet where the
data can be represented and the right threshold can be easily
changed.

B. Haptic Interface

The haptic interface is the Phantom Omni Device from
SensAble, that has 6 degrees of freedom and force feedback
in 3 degrees of freedom. This means the user will be able
of moving the robot arm in any three dimensional direction.
The device can be easily controlled by holding the pen and
moving it to the desired direction.

The OpenHaptics toolkit from SensAble has been used for
the software development. The control strategies will get the
position and orientation from the haptic device and then they
will control the force feedback.

III. CONTROL STRATEGIES

Ten control strategies have been developed. They can be
grouped into three control philosophies: Non Simultaneous
Control (4 strategies developed), Shared Control (3 strategies
developed) and Sensorial Fusion (3 strategies developed).
Next, the control strategies are explained.

A. Non Simultaneous Control Strategies

In Non Simultaneous Control Strategies each interface
controls a robot feature (or robot environment feature) non-
simultaneously.
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+ Non Simultaneous Control Strategy 1:
In this control strategy, first the user gets closer to
an object using the EOG interface and then, the user
touches that object using the haptic interface.
The distance between the robot end effector and objects
is evaluated in each iteration. The strategy estimates if
they are near or far according to preset parameters. If
the robot end effector is far from objects, it is controlled
by the EOG interface. In this case the haptic interface
will automatically be moved like the robot end effector.
When the robot end effector is near from an object, it
is controlled by the haptic interface.

o Non Simultaneous Control Strategy 2:
In this control strategy, the robot is controlled by the
haptic interface and the EOG interface controls the
environment camera.
The user can move, rotate and zoom the environment
camera. That changes affect to the workspace of the
haptic device, e.g., if the zoom tool of the environment
camera is used to get closer to an object, the user will
see bigger the object and the graphic scene and, in the
same way, the workspace of the haptic scene will be
reduced.

« Non Simultaneous Control Strategy 3:
In this control strategy, the 2 DOF tasks are controlled
by the EOG interface and the 6 DOF tasks are controlled
by the haptic interface. Thus the user can realize tasks
in a plane without fixing the others DOF of the haptic
device.
In this strategy the user selects the interface that will
control the robot end effector. In the same way like the
first control strategy, when the robot is controlled by the
EOG interface, the haptic interface will automatically be
moved like the robot end effector.
When the EOG interface is selected, the user can choose
the plane where the robot end effector will be moved
between a list of preset planes (XY, YZ, XZ, ...)

o Non Simultaneous Control Strategy 4:
In this control strategy, first the user defines the EOG
movement plane using the haptic interface. Then, the
EOG interface controls the movement of the robot end
effector in that plane.
Like the previous strategies, when the robot is controlled
by the EOG interface, the haptic interface will automat-
ically be moved like the robot end effector.

B. Shared Control Strategies

In the Shared Control Strategies each interface controls si-
multaneously a different robot feature. The following strate-
gies have been developed:

o Shared Control Strategy 1:
In this control strategy the haptic interface controls
the velocity of the robot end effector while the EOG
interface controls the direction of the robot end effector.
The further the haptic device end effector is from the
center of its workspace (horizontally), the higher speed
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is gotten. If the user moves right, speed is scaled ten
times.

o Shared Control Strategy 2:
In this control strategy the EOG interface controls the
movement of the robot end effector in a plane while
the haptic device receives the force feedback of that
movements. In other words, haptic interface does not
generate control actions.
The haptic device will automatically be moved like the
robot end effector. If the robot end effector touches an
object, it will stop. At this moment, the haptic interface
will be blocked.
In this state, the EOG interface can only carry out
control actions that move the robot end effector away
from the object surface.

o Shared Control Strategy 3:
In this control strategy the EOG interface controls the
movement of the robot end effector in a plane. This
plane is defined by the haptic interface.
The haptic device will automatically be moved like the
robot end effector. The plane is defined with the last 3
DOF of the haptic device.

C. Sensorial Fusion Strategies

Finally, in the Sensorial Fusion Strategies the information
of both interfaces is merged providing a unique control
action. Three sensorial fusion control strategies have been
developed:

o Sensorial Fusion Strategy 1:

Both interfaces control the movement of the robot end
effector in a plane.

The user has four control actions for both interfaces:
up, down, left an right.

The haptic interface is going to behave like the EOG
interface. The user must perform a movement with the
haptic device from an initial position to a position on
left, right, up or down and then return to the initial
position. This action will be the new control action of

Haptic E0G. Fusgion

SPEED 4

_’.

+— SPEED ¥
— SPEED ¥
.‘_

SPEED £

T SPEED 2
1L SPEED ¥
T SPEED ¥
1

SPEED 4

—
-
—
—
1
1
il
il

Fig. 6. Sensorial Fusion Strategy 3. The haptic device controls de direction
of the movement. EOG controls speed on each direction

Fig. 7. Example of circuit panel (left). Robot environment (right)

Both interfaces control the movement of the robot end
effector in a plane.

The EOG interface controls the direction of the move-
ment, while the haptic device controls the movement
itself. This way, the robot end effector is moved by the
haptic interface, but along the direction given by the
EOG interface, which acts as a supervisor.

Sensorial Fusion Strategy 3:

Both interfaces control the movement of the robot end
effector in a plane.

The haptic device controls the movement, while the
EOG interface controls the speed in each direction.
The movement can be totally controlled by the haptic
interface, but user is able to freely speed up or down
the end effector of the robot. The combination of each
control action is described in Fig. 6.

IV. APPLICATIONS

the haptic device.

Thus the user can send two control actions at the same
time, e.g. if the EOG interface send up and the haptic
interface send right simultaneously, the result will be a
diagonal movement, see Fig. 5.

« Sensorial Fusion Strategy 2:
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Once the different strategies are defined, several applica-
tions can be proposed. Some applications aimed at motor
disabled users have been tested in previous works, see [11],
[12]. But there are also applications that improve the clas-
sical human-robot interaction by combining these different
interfaces. As an example, a panel has been designed to test
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the speed of the combination of the haptic and ocular device
(see Fig. 7).

In this application, the user controls the end effector of
the robot, which holds a marker to draw a trajectory in a
previously designed panel. The objective is to pass through
each goal (a total of five) and get the maximum score in as
little time as possible. EOG controls the direction and the
haptic device controls speed.

A protocol was designed to evaluate properly the results.
5 users tested the application and each one drew up to 4
paths. For each one, the speed was measured. This speed
can be calculated as the score divided by the time spent on
each path. Each goal has a value of 10 points if the marker
passes through the center. If not, the score decreases from
10 to O in the left and right end side.

As it can be seen in Fig. 8, speed increases in each attempt.
Notice that User 3 was out of the study because he/she was
extremely tired and the results were not conclusive. For the
rest of the users, it can be seen that the system has a period
of training and the users get used to it throughout time.

V. CONCLUSIONS

This paper has described a multimodal interface based
on electrooculography and haptics. Several control strategies
have been developed in order to exploit the advantages of
multimodality for human-robot interaction. The haptic and
ocular multimodality may be useful to improve this inter-
action. For this purpose, one application with the robot has
been shown. In this test, it is proved that the communication
with external devices, such as robots, enhances substantially
with the combination of both devices and some training.
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Abstract—This work presents the development of a robotic
wheelchair which offers the user (adult or children) with
flexibility of either supervised or fully automatic unsupervised
navigation. It offers the user with multiple command options to
provide support for people with different levels of disabilities.
User may command the chair based on eye blinks recorded
using electromyographic signals (EMG), eye movements using
videooculogram, head movements using accelerometer or video
camera, and using electroencephalogram (EEG signals). The
wheelchair also is equipped with a communication system that
allows the user to communicate with people in the close
proximity. The user is provided with an easy to use and flexible
Graphical User Interface (GUI) on a Personal Digital Assistant
(PDA) that allows the users to communicate the commands,
needs or emotions.

I. INTRODUCTION

ISABLED people often lack mobility and subsequently

face several hardships. Powered wheelchairs help these

patients overcome some these limitations and provide
for them with some level of mobility and freedom. While
extremely useful, the wheelchairs require the user to have
intact manipulation ability to use a joystick to command the
wheelchair. Unfortunately, number of disabled people do not
have the manipulation ability to control a joystick or similar
mechanical device and are unable to use such a wheelchair
[1].

If such low mobility is due to Amyotrophic Lateral
Sclerosis (ALS), the patient would have lost communication
capabilities. In this case, the patient is locked in his own
body, with low quality of life. Frustration, anxiety and
depression are common for these patients [2].

Robotic systems can improve the personal autonomy of
disabled people through the development of some devices
that allow displacement and communication of those
patients. Robotic wheelchair can be used for mobility by
people who are unable to manipulate the controllers. These
can be equipped with sensors to detect obstacles, and such a
wheelchair can follow a predefined path or allow the user a
free path. Such systems can obtain commands based on
biological signals generated by the wheelchair user, such as
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eye blinks, eye movements, head movements and brain
signals (this last one is necessary for patient with ALS [3]).

If the patient is able to maintain good head posture and
controlled head movements, an accelerometer attached to his
head or a video camera installed onboard the wheelchair can
capture the head movements and use it to command the
wheelchair or for the purpose of communication. However if
the patient does not have head movements but can control
his eye blinks (Electromyographic signal — EMG), these
signals can be used.

People with ALS who are unable to blink eyes may use
eye movements (captured with a video camera — video-
oculography).  Another option is the use of
Electroencephalographic signals (EEG). Generally EEG is
acquired non-invasively [4-6], though embedded EEG based
systems have recently been proposed.

In the past, different groups around the world have
worked on providing a modality to help the patients.
Unfortunately, each of the solutions are stand-alone and not
integrated together to provide one common platform that can
provide the user with a choice of modalities for commanding
the robotic wheelchair. While each of the modalities are
useful, without such integration, each of these are able to
support only a small group of patients and do not provide the
user with the desired flexibility and reliability.

This paper reports the development of a robotic
wheelchair that integrates the different modalities and
provides the user with flexibility to choose from a number of
command options. The robotic wheelchair can be
commanded using eye blinks, eye movements, head
movements and brain signals. The wheelchair has onboard a
Human Machine Interface (HMI) integration system that
provides the intelligence to the chair. The system identifies
the different commands and communicates these to a PDA
that identifies the user movement command. This interface
also provides means for the user to communicate with other
people.

The wheelchair also has an autonomous mode, where the
user does not have to provide a series of commands. In this
mode, the user identifies the destination and the wheelchair
identifies the best and safe path to reach the destination
while avoiding the obstacles.

This work is structured as follows: Section 2 presents the
Human-Machine Interface. Section 3 presents details of the
acquisition system and processing system. Section 4 deals
with experiments carried out and, finally, Section 5 presents
conclusions of this work.

II. HUMAN-MACHINE INTERFACE

Fig. 1 shows the structure of the general purpose Human-
Machine Interface that has been developed and installed



onboard the robotic wheelchair. This consists of an
acquisition system that includes amplification, filtering,
digitization, recording and processing of different biological
signals. The signal is recorded on the onboard computer
which in real-time classifies these signals and interfaces with
the PDA to generate command signals to the wheelchair,
feedback signals for the user (Fig. 1), and performs
automatic symbols scanning with the PDA. These symbols
are associated to movements (arrows or places) or
communication (characters and iconic symbols representing
needs or feelings). After a valid command has been
identified, a movement command is sent to the wheelchair or
an acoustic signal is generated for the audio speakers
onboard the wheelchair.

HUMAN MACHINE INTERFACE

COMPUTER
= —

SIGNAL ACOUISITION
AND CONDITIONING FEATURE EXTRACTION

CLASSIFICATION

COMMUNICATION
INTERFACE

BI-FEEDBACK

&

ROBOTIC WHEELCHAIR

CONTROL SIGHALS
GENERATION

HMI QUTPUT

Fig. 1. Structure of the Human-Machine Interface developed.

III. ACQUISITION AND PROCESSING SYSTEM

The system being reported in this paper is a non-invasive
system. It determine eye blinks based on surface
electromyogram (sEMG) of the associated muscles. This
requires placement of surface electrodes on the temporal
muscles around the eyes. The eye movements are
determined based on video data acquired through a small
video camera attached to purpose built easy to wear system
resembling commonly worn spectacles (videooculography).
For obtaining the head movements, two modalities have
been provided in this system. An accelerometer attached to
the head using a cap is one modality and a video camera
installed in front of the wheelchair user is the second
modality. EEG signals are acquired using a pair of surface
electrodes placed on the visual cortex (occipital region).

A. Commanding the Robotic Wheelchair by Eye Blinks

To command the robotic wheelchair using eye blinks,
two channel EMG signals are captured through electrodes
located on temporal muscles (Fig. 2). One channel is used
for the right eye muscle and the other for the left eye muscle.
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The signals shown in Fig. 2 are the differential signal
between both channels, using a reference at the ear lobe.

Right Eye (mV)

EMG
Left Eye (mV)

Time (s)

Fig. 2. EMG Acquisition (eye blinks).

To detect the eye blink signal, a simple threshold based
algorithm was used. The threshold is determined from the
sample data, being 35% of the maximum of the EMG signal.
Eye blink is detected with peaks above 35% of the
maximum peak because this avoids false detection [8].

The next step in confirming the eye-blink is based on the
duration. The algorithm developed is based on the angular
variation of each sample point of the data. The tangent to the
left and to the right of the signal peak derivate is computed.
In case of the tangent value is smaller than an empirically
determined threshold value (0.0025 was used for our
experiments), this is considered the beginning or the end of
the valid signal.

After identifying the eye blinks signals as detailed above,
supervised Artificial Neural Network (ANN) was used to
recognize the eye blink and ignore the noise. As the first
step, the data was downsampled to 20 samples/ second. This
was then normalized to improve the speed of convergence of
the ANN.

252 test signals were obtained (84 eye blinks of the left
eye, 84 of the right eye and 84 randomic noise). Several
supervised ANN algorithms were evaluated, and Resilient
Backpropagation algorithm, with 4 neurons in the hidden
layer and 3 neurons in the output layer was selected based on
its performance. With this algorithm, the accuracy for the
test data was 99.6% in the cases. Fig. 3 shows the robotic
wheelchair commanded by eye blinks.

J. R = &

Fig. 3. Robotic wheelchair commanded by eye blinks.

B. Robotic Wheelchair Commanded by Head Movements

Two options have been provided for enabling the user to
give head movement commands. One option uses an
accelerometer type inclination sensor attached to a cap (or



other device attached to the head). The second option is
video based and uses a video camera mounted in front of the
wheelchair and trained towards the head.

e Using an accelerometer

A two axis accelerometer has been incorporated to
provide a voltage proportional to the head inclination. This
signal is processed by a microcontroller which uses
Bluetooth to communicate with the onboard computer. Fig.
4 shows this sensor attached to the purpose built circuit to
measure head movements. Moving the head forward, to the
right or to the left, commands the robotic wheelchair to go
forward, turn to right or turn to the left, respectively. Moving
the head to the rear makes the wheelchair stop.

Centro Tecnolégico

SN
Fig. 4. Inclination sensor based on accelerometer attached to different
devices.

The principle behind determining the head inclination
angles is based on associated gravitational accelerations. To
obtain the head movement, two independent angles need to
be determined; o and B angles. a is the forward inclination
while f is the angle to the left and to the right Fig. 5 shows
the process of obtaining the o angle, which is given by:

a = cos’ (Gy/G)

Fig. 5. Obtaining inclination angle o.

Fig. 6 shows the robotic wheelchair commanded by head
movements (captured by accelerometer).

= > : AR
Fig. 6. Robotic wheelchair commanded by head movements (captured by
accelerometer).
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e Using video camera

To detect head movements, a standard light weight fixed
focus webcam video camera can also be used. It is necessary
to install the camera in front of the wheelchair such that it
captures images of the user face (Fig. 7). It is necessary for
all the processing to take place in real time.

Fig. 7. Robotic wheelchair commanded by head movements (captured by
video camera).

The first step in the analysis of the video data is
histogram equalization of the RGB video data to improve
contrasts and overcome lighting variations. This is
transformed to YCbCr space to detect the skin color. The
image is segmented to identify the skin using a Cb and Cr
threshold obtained from the training data. An elliptical
region of interest (ROI) is generated and centered at the first
image moment of the segmented image. An operation AND
is executed between the ellipsis generated and the negative
of the component Y.

The next step is identification of the centroids of the
regions associated to both eyes and the mouth. These are
filtered using a Kalman filter to improve the position
estimate. Three non-collinear points in the camera
coordinates define a triangle in the image plane (Fig. 8).
Changes in space points, due to head movements, will be
projected on the image plane, changing the points in the
image.

Fig. 8. Facial features.



From the point projections on the image, the different
angles of the head movements can be obtained: rotation
about axis Z, rotation about axis Y and rotation about axis X,
given, respectively, by

—1f yr—yl

xr — xl

¥ = tan

_ 4 ali\/alz—fz(alz/ag—l)
A=2un f(al/a0+1)

q i‘\/clz—fz(clz/cg—l)
f(Cl/Co +1)

a=2tan™"

C. Robotic Wheelchair Commanded by Eye Movements

To command the robotic wheelchair by eye movements,
a webcam attached to a purpose built commonly used
spectacle shaped support has been used. Fig. 9 shows the
Human-Machine Interface used to track the eye movements.

Human Machine Interface
Eye Movement
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Use
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Centrold Eye
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Communication

Blo-fesdback Interface

Robotic Wheslchair <"1
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Fig. 9. Human-Machine Interface used to track eye movements.

Control Signals
Generation

To obtain the eye movement, the ocular globe has to be
first identified. The first step requires identifying a threshold
to distinguish the iris from other parts of the face. However,
this technique can be influenced by the presence of the
eyebrow and eyelash. To overcome this shortcoming, a
Hough Circular Random Transform and a Canny filter have
been applied to the image. The next step is to define a region
of interest around the eye to allow tracking the eye
movements. Due to illumination variations, a Kalman filter
is used to reduce the error in the calculus of the eye center.
This way, a robust system is obtained allowing determining
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the eye position and tracking it. To select a symbol in the
PDA, the wheelchair user must gaze the eye to the symbol
desired. For instance, to command the robotic wheelchair to
go ahead, the user must gaze his eye to the arrow indicating
go ahead movement. Thus, after some seconds, the PDA will
send a control signal to the computer onboard the wheelchair
in order to start the movement desired. Fig. 10 shows the
steps necessaries to detect and track the eye movements, and
Fig. 11 shows the system adapted to the wheelchair.
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Fig. 10. Steps necessaries to detect and track the eye movements.

Fig. 11. Robotic wheelchair commanded by eye movements.

D. Robotic Wheelchair Commanded by Brain Signals

To command the robotic wheelchair by brain signals, it is
necessary to put a pair of electrodes on the occipital cortex
(visual region), position O; and O,, according to Standard
International 10-20 (Fig. 12).
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Fig. 12. Standard international 10-20 to locate electrodes.



The brain patterns used are suppression and activation of
alpha rhythm, which are related to concentration and visual
excitation (which is more intense to open eyes), and visual
relaxation (which is more evident to closed eyes) [7].

Fig. 13 shows the electrode location on the occipital
cortex and the brain signals generated when the wheelchair
user has visual excitation (suppression of alpha rhythm) or
visual relaxation (activation of alpha rhythm).

ACTIVATION

SUPRESSION
e S

0 I 2 3 4 5 B T

Time ()

Fig. 13. EEG acquisition on the occipital region.

The signal acquisition system is composed of a
conditioning board, where signals are amplified, filtered and
digitized. Filtering is necessary to extract the CC level and
attenuate the 60 Hz noise and other artifacts (from muscles,
heart beats and electrode movements). A bandpass filter
from 8 to 13 Hz is used to obtain the alpha rhythm.

To identify the command from the EEG signal, the signal
variance (VAR) has been used. This has the advantage of
giving a measure of the signal intensity and density while
being suitable for near real-time application and is given by

s= L3 (o )
NG

where N is number of samples of the EEG signal, x, is the k-
th simple of the signal and p is the simple average, given by

1 N
ﬂ—ﬁkzzl‘,xk

In Fig. 13 a signal that contains the patterns of activation
and suppression is shown. This is generated by the
wheelchair user by opening the eyes to generate suppression,
and by closing the eyes, to generate activation. It can be
observed from this figure that the signal variation is very
significant. It can also be observed from Fig. 13 that the
signal variance changes significantly.

Signal classification has been performed using a
threshold technique. Only if the variance is greater than the
higher thresholds, the signal is considered to be a command.
If the signal is between the two thresholds, the signal is
considered in a dead zone, and if lower than the lower
threshold, it is discarded. These two thresholds are
determined during training.

Fig. 14 shows the robotic wheelchair commanded by
brain signals. Besides the biosignals based human computer
interface for commanding the chair, this wheelchair is
equipped with multiple sensors to ensure the safety of the
user. An encoders determines its location; ultrasonic sensors
are for obstacle avoidance and magnetic sensors detect
metallic tracks (in case the wheelchair is operating as an
auto-guided vehicle). A set of speakers are provided to help
the user communicate using pre-recorded voice.
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Fig. 14. Robotic wheelchair commanded by brain signals.

Kinematics and dynamic models based control
architecture has been used to control the wheelchair
movement [10], [11] (Fig. 15). The kinematics controller
receives the reference signals associated to movement
commands, and generates linear and angular velocities, that
are transmitted to the dynamic controller. This controller
then generates another pair of linear and angular velocities,
which are transmitted to the low level controller (PID
controller) onboard the wheelchair. This low level controller
is responsible for controlling the linear and angular
velocities of the wheelchair.

The dynamic controller was designed based on the
nominal wheelchair dynamic, which represents the medium
estimate dynamic of the wheelchair.

The kinematics controller manages the changes needed
to the wheelchair orientation and its linear and angular
velocities. On the other hand, the dynamics controller
improves the wheelchair navigation, generating smooth
movements.

User Command

f i - : Free-Collision |
T E—
Heading Path-Following
Control Control
Kinematic
Controllers

Positioning
Control

Dynamic Compensation

Robotic Wheelchair

Fig. 15. Control system of the robotic wheelchair.

IV. AUTO-GUIDED NAVIGATION

The robotic wheelchair also provides an auto-guided
option to the user for indoor environment. This maybe



appropriate for a highly dependent user, or a user who may
desire this option to go to some specific locations. It is also a
desired option for indoor environment when navigating the
doors may not be easy for some of the users.

For this option, metal tape on the floor is provided to
define the navigation path. Magnetic sensors are installed on
the wheel chair and these detect the metallic tracks. In the
auto-guided option, the pathway for the wheelchair along the
metallic strips from the current location to the desired
location is determined by the computer. RFID (Radio
Frequency Identification) targets are also installed in suitable
locations such as the door to monitor the wheelchair for
controlling the speed. It also provides acoustic feedback to
the user for location awareness. Fig. 16 shows the magnetic
sensors and the RFID reader installed onboard the
wheelchair.

MetalicTrack

Ilagnetic Sers or

RFID Reader

The path planning algorithm used is based on variation of
the Frontier Points Method. This method finds empty spaces
at the limits of the range sensor measurements and directs
the motion of the robotic wheelchair to these spaces. The
nodes generated by this algorithm are obtained by an angle
windowed search of the frontier point associated to the laser
range. Fig. 19 shows the determination of the frontier points.
A path is generated joining the nodes by a spline. It is
dynamically maintained and updated during the wheelchair’s
driving. This situation helps in avoiding collisions,

generating a safety zone along each node of the path. This
ensures that the path does not have obstacles.

The SLAM system state is composed by the wheelchair’s
pose estimation, the parameters of the middle point of the
door and the parameters of the corners (concave and convex
of the environment) and lines (associated with lines). The
algorithm starts when a door is detected.

Fig. 16. Details of the magnetic sensor (left), its location on the wheelchair,
the RFID reader and the metallic tracks.

V. NAVIGATION USING LASER SENSOR

Athough we have used metalic stripes along the way and
using magnetic sensors to detect them in order to allow the
wheelchair to navigate through narrow ways, we also have
used laser sensor for navigation through SLAM
(Simultaneous Localization and Mapping Algorithm) [12,
13]. The problem is how to drive the wheelchair to
successfully cross a door without using reactive behavior.
No map is previously loaded neither. The solution using
SLAM allows simultaneously build a map of the
environment while the door is detected and the wheelchair
robot tries to reach it. Fig. 17 shows the laser sensor onboard
the wheelchair, and Fig. 18 shows the general system
architecture used in this work.

The SLAM is implemented by an EKF (Extended Kalman
Filter) algorithm which estimates both: the wheelchair’s
position and the environmental features parameters. The
door is considered as part of the SLAM system state. Once
the door is detected, a path is generated between the
wheelchair and the door. The path is then time constrained
and an adaptive trajectory controller drives the wheelchair to
the door. The controller receives the wheelchair’s pose
estimation within the environment (Fig. 20).

The door is detected by an adaptive cluster algorithm,
based on laser histogram measurements. The parameters that
define a door are the coordinates of its middle point at the
SLAM reference system. Lines and corners surrounding the
door are features used to recognize the door. The laser
sensor acquires 181 measurements from 0 to 180°.
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Fig. 17. Laser sensor installed onboard the robotic wheelchair.
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Fig. 18. General architecture system.
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Fig. 20. Adaptive trajectory controller to drive the wheelchair to the door.




VI. COMMUNICATION SYSTEM

The PDA onboard the wheelchair provides the graphical
user interface (GUI) with icons for movement commands
(arrows or icons of places) and communication symbols
(characters and icons expressing needs or feelings), Fig. 17.
These are organized in a hierarchical fashion, and scanned
serially. The user can make a selection at the temporal
location when the desired symbol is scanned. A suitable pre-
recorded acoustic emission is produced according to the
symbol, word or sentence selected.
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Fig. 17. Different options of communication (symbols representing needs or
feelings, or characters) and movement (arrows of movement or symbols
representing places) present on the PDA.

VII. CONCLUSIONS

A multi-option robotic wheelchair is presented in this
paper. This wheelchair can be commanded by eye blinks,
eye movements, head movements and brain signals. It also
provides for autonomous control option. The chair has a user
friendly GUI using which the wheelchair user can issue
movement commands to the wheelchair, or use the onboard
communication system to communicate with people in the
proximity. The GUI uses easy to recognize icons organized
in a hierarchical fashion to help the user express emotions
and feelings or select characters to compose words or
sentences. A set of pre-recorded acoustic signals and a
speaker are provided for this purpose.

The wheelchair can navigate in an autonomous style by
taking the user from the current location to the desired
location, or in an auto-guided style by following metallic
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tracks. RFID is used to determine the location. This is also
used to provide location awareness to the user.

The wheelchair uses a kinematics and dynamics
controller to minimize navigation error and perform smooth
movements.

Several experiments were conducted with this robotic
wheelchair, with the subjects using the different command
options. The wheelchair was evaluated by healthy and severe
disabled people (adult and children). The next step is to
extend the brain signals option using EEG based motor
mapping. This option would allow the user to command the
chair with the intent of the movement of the left and right
hand. Preliminary experiments have been conducted using
Power Spectral Density (PSD) and Adaptive Autoregressive
(AAR) parameters as feature inputs to a classifier based on
Support Vector Machine (SVM). Results indicate the
command identification accuracy to be 98%.
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Abstract—An agent’s ability to perceive the world and its
physical capabilities impact its communicative modalities.
Moreover, the sensing and processing (i.e., interpretation)
abilities of the user determine the channels and dynamics of
communication that should be utilized by the robot to transmit
and receive information. In previous work, we proposed an
ontology-based communication and coordination system for the
formation of impromptu teams of heterogeneous robots. We
extend this work to consider the capabilities of both the robot
and a human user in the production of multimodal
communicative behaviors to facilitate user needs and
preferences in an interaction.

I. INTRODUCTION

S humans, we know that our abilities to sense the world

and our physical capabilities to interact with the world
shape the way we ground concepts and communicate them
[1]. The capabilities and sensing modalities of a robotic
agent have analogous impact on its abilities to communicate.
This is evident in the coordination of impromptu teams of
heterogeneous robots [2]. Moreover, the characteristics of a
human user influence the way that the robot should interact;
specifically, the sensing and processing (i.e., interpretation)
abilities of the user determine the channels and dynamics of
communication that should be utilized by the robot to
transmit and receive information.

Verbal and nonverbal modalities make up what can be
considered “typical” human communication. However, there
are some populations whose circumstances impair such
social interaction [3]. For example, children with autism
spectrum disorder (ASD) tend to avoid eye contact and, thus,
often miss communicated intentions and emotions expressed
in the face and body; the early-to-moderate stages of
Alzheimer’s disease often limit a patient’s vocabulary; post-
stroke rehabilitation patients frequently have reduced motor
activity, thus limiting social expressiveness. We consider the
capabilities of both the robot and the user in the production
of multimodal communicative behaviors to facilitate the
specific preferences and needs of the user in an interaction.
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II. BACKGROUND

In previous work, we presented an ontology-based
symbolic communication protocol and Agent Interaction
Manager for coordinating impromptu teams  of
heterogeneous robots [2]. Ontological reasoning provides a
sense of meaning to information. By representing a robot’s
abilities, perceptions, and goals as symbols relating to
concepts in ontologies, a robot is able to meaningfully share
its symbols with other agents via network communication.

Tejada et al. [4] and Browning ef al [5] discuss
mechanisms for humans to coordinate with homogeneous
and heterogeneous robots, respectively. Each of the
proposed techniques incorporates a traditional computer
interface for communication. However, humans rely on
verbal and nonverbal modalities, such as speech and body
language, to convey information. Likewise, a social robot
should utilize similar modes of communication.

III. APPROACH

We revisit our ontology-based Agent Interaction Manager
(AIM) [2], and extend it for interactions with humans. In the
previous implementation, robots communicated concepts
over a network using the AIM protocol; however, the
channels utilized in human interaction require the robot to
communicate concepts via verbal and nonverbal modalities.

A. AIM Server—Agent Profiles and Templates

At initialization, a robot AIM client (Fig. la) uses the
AIM protocol to communicate its concepts to an AIM server
(Fig. 1b). These concepts define the ontologies necessary to
form the robot’s agent profile—an ontology generated
dynamically using the concepts expressed by the robot [2].

In the presence of another agent, the robot sends an AIM
message requesting the instantiation of a new profile unique
to the agent. This profile is initialized using an agent
template, a generic representation of the concepts and
modalities utilized by a category of agent. For example, if
the robot identifies the agent as another robot, then the local
area network is an assumed medium for communication;
however, if the agent is identified as human, then verbal and
nonverbal modalities are assumed, as well as some
understanding of concepts represented by the ontologies.
AIM is then responsible for maintaining the profiles of all
known agents, recognizing common concepts and modalities
between them. This is inspired by computational models for
the theory of mind [6], and has implications with regard to
special-needs populations, such as children with ASD [3].



B. AIM Client—Agent Model and Interfaces

The agent model refers to the agent’s knowledge
representation of the world, as well as necessary meta-
knowledge to communicate concepts to AIM through agent
interfaces. An agent interface converts the representation
with respect to an interaction modality into ontological
concepts that can be exchanged in the AIM server (Fig. 1a).

In AIM, information is presented in a structured form,
similar to a descriptive sentence, containing a subject, a
predicate, and an object [2]. By enforcing this strict syntax,
concepts can be broken down and related to the traits of
others. This embedded grammar can be used to produce an
interface for verbal communication (e.g., text-to-speech [7]).

A robot must utilize its own embodiment to communicate
to a human. There are two types of nonverbal behavior:
speech-independent and speech-dependent [8].

Speech-independent nonverbal communication requires
that the robot physically convey the essence of a concept.
For example, facial expressions can be used to express
emotion; deictic gestures, such as eye gaze or pointing, can
be used to indicate a point of interest; shape-related gestures
can be used to illustrate the form of an object [9]. Balch &
Parker [10] suggest that agents exchange concepts in three
ways: (1) iconically, expressed physically similar to the
concept itself; (2) indexically, establishing connections
between iconic representations; and (3) symbolically,
providing semantic relationships among all three
representations. We  are investigating  physical
manifestations of these representations.

Speech-dependent nonverbal communication requires that
the robot produce socially expressive behaviors that
compliment the verbal channel. Lee & Marsella [11]
describe a rule-based NonVerbal Behavior Generator
(NVBG) that converts the function of a communicative act
(i.e., speech content and emotion) to “coverbal” (i.e.,
synchronized verbal and nonverbal) behaviors for embodied
conversational agents; a “behavior realizer” is then used to
carry out the coverbal act. We are in the process of
integrating NVBG and implementing behavior realizers for a
variety of anthropomorphic and non-anthropomorphic robots
(http://robotics.usc.edu/interaction/?I=Laboratory:Facilities).

Iv.

A series of agent templates and interfaces will be
validated on wvarious typically-developed/unaffected user
groups, and then extended to focus on special needs
populations, such as children with ASD, people with
Alzheimer’s disease, and post-stroke rehabilitation patients,
in an effort to improve or optimize human task performance.
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Systems
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Abstract— Graphical User Interfaces play a very important
role in the context of Underwater Intervention Systems.
Classical solutions, specially concerning Remotely Operated
Vehicles, frequently require users with an advanced technical
level for controlling the system. In addition, continuous human
feedback in the robot control loop is normally needed, thus
generating a significant stress and fatigue to the pilot.

This paper shows work in progress towards a new
multimodal user interface within the context of autonomous
underwater robot intervention systems. We aim at providing
an intuitive user interface that can greatly improve the non-
expert user’s performance and reduce the fatigue that
operators normally experiment with classical solutions. For
this, we widely adopt advanced interaction systems such as
haptic devices, projectors, Head-Mounted Display and more.

Keywords— Graphical User Interface (GUI), Autonomous
Underwater Vehicle for Intervention (I-AUV), multimodal
interface, simulator.

I. INTRODUCTION

CURRENTLY Remotely Operated Vehicles (ROVs) are
commercially available to develop all kind of
intervention missions. These systems are underwater robots
tethered to a mother ship and controlled from onboard that
ship. Here the control is assumed by an expert user, called
the ROV npilot, by means of a special Graphical User
Interface (GUI) with specific interaction devices like a
joystick, etc. The main drawback in this kind of systems,
apart from the necessary expertise degree of pilots, concerns
the cognitive fatigue inherent to master-slave control
architectures [1].

On the other hand, the best underwater robotics labs
around the world are recently working for the next
technology step, trying to reach new levels of autonomy far
beyond those present in current ROVs. These technologies
have lead to Autonomous Underwater Vehicles for
Intervention (I-AUVSs), which represent a new concept of
undersea robots that are not tethered to a mother ship. In
fact, the history about I-AUVSs is very recent, and only a few
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laboratories around the world are currently trying to develop
this kind of systems [2].

One of the most well-known research projects devoted to
develop an I-AUV is SAUVIM [3]. Along its life, this
project has implemented a GUI combining all kind of sensor
data inside a common simulation environment. Their GUI
uses its own programming language and allows for high
level interaction of the user and the underwater robot in text
mode. In addition, virtual reality (VR) is available within the
GUI, thus showing the evolution of the complete system
along the intervention mission, and assisting the user in the
high-level control. This very complete interface has shown
to be very suitable for users with an advanced previous
expertise, but might be too complex for a new user without
technical knowledge.

Our research group is working on this kind of underwater
intervention systems in general, and more concretely in
specific multimodal interfaces that allow an intuitive use by
non-expert users. In fact, because of the impossibility to
implement a complete 1-AUV autonomy level with available
technology, we design a two steps strategy [4], guaranteeing
the “intelligence” in the system performance including the
user in the control loop when strictly necessary, but not in a
continuous way like in ROV’s. Thus, in a first step, our I-
AUV is programmed at the surface, and then navigates
through the underwater Region of Interest (Rol) and collects
data under the control of their own internal computer
system. After ending this first step, the I-AUV returns to the
surface (or to an underwater docking station) where its data
can be retrieved. A 3D image mosaic is constructed, and by
using a specific GUI, including virtual and augmented
reality, a non-expert user is able to identify the target object
and to select the suitable intervention task to carry out
during the second step. Then, during this second step, the I-
AUV navigates again to the Rol and runs the target
localization and the intervention modules onboard. Our I-
AUV system concept, currently under construction in Spain
(i.,e. RAUVI’s Spanish Coordinated Project), can be
observed in Figure 1, where the vehicle, developed in the
University of Girona (Spain) and the arm, under
responsibility of Univerisity Jaume | (Spain), that is an
adaptation of the “arm 5E” from CSIP Company (UK) must
be assembled in the next months. Moreover, it is noticeable
that just now we are starting out the coordination of a
European Project named TRIDENT within the same context
but with a bit more challenging long term objectives.

Thus, this paper shows our ongoing research on



multimodal user interfaces for enabling the aforementioned
kind of underwater intervention missions, initially focused
on recovery object tasks. We aim to provide an intuitive user
friendly interface improving the non-expert user’s
performance and reducing the inherent fatigue within
traditional ROV interaction ways. Section Il describes our
recent efforts for building such an interface, including our
ongoing work on immersive underwater simulation,
facilities for target identification and task specification, and
recent progress in grasp simulation. Section Il clarifies the
main drawbacks and advantages of our solutions when
compared with the state of the art technologies, and also
discusses the results obtained so far and the long list of
challenges that need to be addressed. Finally, Section IV
concludes this paper.

Fig. 1. The I-AUV envisioned concept currently under construction within
the RAUVI’s Spanish Coordinated Project.

Il. TOWARDS A NEW MULTIMODAL INTERFACE

The whole mission specification system is composed of
three modules: a GUI for object identification and task
specification, a grasp simulation and specification
environment, and the I-AUV Simulator. After target
identification and specifying the intervention task, all the
information is displayed into another 3D environment where
the task can be simulated and the human operator can either
approve it or specify another strategy by means of some
facilities addressed within the interface. Finally, another
environment is used for simulating and supervising the
overall intervention mission. The ongoing work on these
three modules is detailed in the following.

A. GUI for target identification and task specification.

Two main tasks must be solved in the underwater
intervention context: the target identification and the
specification of the suitable intervention to carry out over
the target. Initially, a GUI is used for specifying the task to
perform. Once the desired task has been selected, the GUI
provides facilities for detecting interesting objects and
identifying the target.

We are currently trying to expand the facilities available
through the GUI for enabling a more intuitive level of
interaction. In this way, the developed GUI (Figure 2) tends
to be user-friendly with few requirements from the user side.
Some examples of the intervention tasks to specify could be
hooking a cable, pressing a button, etc. Currently we are
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focused on a specific task related with object recovery,
where a suitable grasp has to be performed in order to
manipulate in a reliable manner the target object.

e 5]

Fig'. 2. An exémp{le of GUI screenshot: the object detection process

Looking for easy-to-use interaction ways, the GUI assists
the user adapting its interface depending on the task to
perform. Once the user has loaded the input image (i.e. first
step in the process) and selected the intervention task, the
user identifies the object and selects the target. For that, the
GUI provides methods for object characterization and also
for assisting in the grasping determination problem. The
planned grasp will be later used in the grasping simulator
and finally, in the real system. The general process can be
observed in Figure 3. Due to the pour visibility conditions in
the underwater environment and so, in the input image, the
user could have problems to identify correctly the target.
Low-level details about the different interaction ways
currently available within thee GUI under development can
be found elsewhere [5].

Select Intervention Identify objects
:»... a3
Load Image — «:. - O e F
) Press Bullon -
Select target

Adjust Best Fitting Ellipse

Export data

B UnderWatarRoboti

Lo e | Exportonn

Fig. 3. Main steps through the GUI under development during the object
characterization process.

The underwater scenario provides a hostile and very
changing environment, including poor visibility conditions,
streams and so on. So, the initial input compiled during the
survey mission will be always different to the final
conditions arising during the intervention mission. Thus, a
predictive interface ensuring realistic task simulation is more
than convenient before the robot be able to carry out the
intervention defined by the user in the GUI.



B. Grasp simulation and specification.

Our most recent work is focused on an intuitive grasp
simulation and supervision system that allows the user to
visually check and validate the candidate grasps or to
intuitively refine them in case they are not suitable. The
grasping simulator will get data from the XML file
generated by the previous object detection and task
specification GUI. This data will include candidate grasping
points and other target object properties that will be
displayed in the simulator following augmented reality
techniques (e.g. grip opening, joint angles, planned contact
points, etc.).

The user’s hand will be covered by a data glove with a
tracking system that will allow replicating the human hand
motion in the simulated environment. This will be used for
specifying the required elements of a grasp (e.g. the hand
configuration, grip opening, etc.), and also for indicating
predefined actions through specific gestures (see Figure 4).

Fig. 4. Detail of the P5 data glove during a simple test: “grasp a virtual
cube”.

Our research team has a long experience in robotic
grasping using the knowledge-based approach [6]. This
approach defines a set of hand preshapes, also called hand
postures or prehensile patterns, which are hand
configurations that are useful for a grasp on a particular
shape and for a given task. Several hand preshapes
taxonomies have been developed in robotics, being the one
proposed by Cutkosky [7] the most widely accepted. Since
the publication of the Cutkosky’s taxonomy, several
researchers in the robotics community have adopted the
grasp preshapes as a method for efficient and practical grasp
planning in contrast to contact-based techniques.

One of our recent contributions in the field of robotic
grasping is the concept of ideal hand task-oriented hand
preshapes [8], which are a set of hand preshapes defined for
an ideal hand and extended with task-oriented features. The
ideal hand is an imaginary hand able to perform all the
human hand movements. Our approach is to plan or define
grasps by means of ideal preshapes, and then define hand
adaptors as a method for the instantiation of the ideal
preshapes on real robotic hands. The main advantage of this
approach is that the same grasp specification can be used for
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different hands, just by defining a suitable mapping between
the ideal hand and the real one. This concept is illustrated in
Figure 6, which shows three different ideal preshapes and
their mapping to a robotic Barrett Hand.

We plan to adopt this approach for the grasp specification
and execution in the context of our grasp simulator. The
human operator will specify a grasp using its own hand
covered with a data glove. The finger joint angles captured
by the data glove tracking system will be passed to a
standard classifier (e.g. like in [9]) that will select the ideal
hand preshape that best suites the human hand posture. The
grasp will be specified by the ideal hand preshape and the
part of the object where it is applied. For its execution by a
robotic hand, the corresponding hand adaptor will transform
the ideal preshape into a real posture depending on the
robotic hand. The grasp will be finally simulated with the
real robotic system as shown in Figure 5.

1) Low level details for the grasp simulator.

In order to develop the grasping simulation, some of the
most common and used game and physics engine software,
have been explored. A game engine is a software system
designed for the creation and development of video games.
The core functionality typically provided by a game engine
includes a rendering engine for 2D/3D graphics, a physics
engine or collision detection and response, and so on. On the
other hand, a physics engine is used to model the behaviors
of objects in space, using variables such as mass, velocity,
friction, and wind resistance. It can simulate and predict
effects under different conditions that would approximate
what happens in real life or in a fantasy world. They are also
used to create dynamic simulations without having to know
anything about physics.

Fig. 5. GUI integrating the Barrett Hand 3D-model simulator

Despite both software platforms seems to be similar, a
very important difference exists between them. The physics
engine uses the Physics Processing Unit (PPU), which is a
dedicated microprocessor designed to handle the
calculations of physics, (e.g. rigid and soft body dynamics,
collision detection or fracturing of objects). Using this
dedicated microprocessor the CPU is off-loaded of high
time-consuming tasks.
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Fig. 6. Three different ideal preshapes and their mapping to a Barrett Hand

In this way, the software compared is the jMonkeyEngine
[10] (JAVA game engine) and PhysX [11] (physic engine).
JME is a high performance scene graph based graphics API
and is completely open source under the BSD license. A
complete feature list can be found in [12]. On the other
hand, PhysX is a proprietary solution of NVIDIA, but its
binary SDK distribution is free under the End User License
Agreement (EULA). A complete feature list can be found in
[13].

The main difference between both engines is the platform
compatibility and PC performance. Whereas JME is
available for PCs (Windows, Linux and MacOS), PhysX is
available for PCs (Windows and Linux) and all the actual
videogames platforms (PS3, Xbox360, Wii). This justifies
the number of more than 150 title games using PhysX
technology. In PC performance terms, the use of a NVIDIA
graphic card compatible with PhysX increases the general
PC performance. Of course, with a SLI [14] schema with
one dedicated graphic card, PhysX would deliver up to twice
the PC performance (in frames per second). We should
notice that PCs with an ATI graphic card would not get all
the advantages of this technology, due to PhysX is a
proprietary solution of NVIDIA, although they could still
run the program.

Thus, in our first approach developing the grasping
simulator, we are considering the NVIDIA physics engine.
Besides the advantages explained before, we will try to take
profit of the latest NVIDIA graphic card features, even
using its 3D Vision technology [15]. This technology
enables 3D vision over every single application, and only
needs a 3dReady LCD monitor and a NVIDA GeForce 3D
Vision glasses.

C. I-AUV Simulator.

Previous research in this context has been developed in
our Laboratory since 2008, starting with the cooperation
with the University of Bologna, Italy, in order to implement
a complete simulator [4]. This simulator includes a complete
I-AUV 3D model, and emulates the physics of both the
underwater environment and the robotic system. Currently,
we are improving the user interaction capabilities by using a
Head Mounted Display with an accelerometer, enabling to

40

control the virtual cameras by means of the human head’s
movements. Further development could also include data
gloves for gesture recognition, as can be observed in Figure
7.

Fig. 7. The initial simulator under development.

On the other hand, another I-AUV simulator is being
developed at our laboratory, as observed in Figure 8. Its
main features are the distributed and collaborative
properties, as well as the use of advanced Virtual Reality
(VR) devices. Low-level details can be found elsewhere
[16]. This simulator uses a distributed and collaborative
system, which enables to combine remote data coming from
different PCs that can be placed in different locations. Thus,
different users can work in cooperation with this kind of
interface achieving simultaneously task specification
missions/simulations that can be observed by different users
in real time.

Fig. 8. The I-AUV s teleoperated by the user by means of special VR
hardware, including immersive 3D vision and a virtual joystick controlled
with data gloves.

In particular, this kind of cooperative interface opens new
capabilities for personal training, enabling the possibility of
sharing the VR interface among several remote experts and



non expert’s users. In this way, researchers on different
disciplines can focus on the simulation aspects that are most
interesting for their research, either if they are not physically
present in the ship.

However, this cooperative VR interface has a serious
drawback: the high costs underlying the specific hardware
resources included in such a system.

I1l. DiscussION

After exploring different possibilities of interfaces
including all kind of VR devices, simulators and the
potential of cooperative work, it is clear that significant
benefits can be achieved. Probably one of the main
advantages is what concerns the user training. In fact, the
interaction by means of more intuitive and user friendly
interfaces would allow reducing the pilot training period. In
particular, the use of the developed VR technology,
including distributed, collaborative and multimodal
components, allows the user to interact in a very realistic
way with the intervention scenario, promoting prediction
actions. In addition, it allows appreciating the nature of the
problems in case the simulation of the mission plan fails.

The most important difference between our approach and
other existing solutions is that we put a special emphasis on
the use of advanced technologies and functionalities making
easier the human robot interaction for non-expert users.

For instance, the SAUVIM’s GUI integrates several
modules into one single interface, so the overall user
interface provides a very powerful and flexible solution for
monitoring the state of the robot during the mission, and
provides advanced mechanisms for the low-level control.
However, the interface has been designed for expert users
that require an advanced technical background, including
very specific and intensive training periods.

In contrast, our GUI is being developed focusing basically
on the user experience. In fact, the GUI is divided in three
different applications: the object identification & task
specification GUI, the grasping simulator and the general I-
AUV simulator. All of them make use of advanced devices
for human-computer interaction (e.g. data gloves, Head-
mounted Displays, etc.) and enabling an immersive 3D
environment where interaction is more satisfactory for the
end-user.

However, this project is still in a preliminary stage and
needs further research for a complete validation. So, in the
work developed so far, we have analyzed several human-
computer interaction devices that could potentially improve
the way humans currently interact with underwater robotic
systems. We have explored and implemented different
possibilities that have to be carefully analyzed, having into
account the end-user’s requirements and preferences, before
its final implementation. Therefore, future lines will mainly
focus on a thorough analysis of the different options and the
selection and complete implementation of the most suitable
solution.
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IV. CONCLUSIONS AND FUTURE LINES

This work has presented the first steps towards the
development of a user-friendly GUI for autonomous
underwater intervention missions. We are considering an
interface composed of three different applications for object
detection and task specification, task simulation, and for the
overall supervision of the mission. We claim that the use of
new graphics technology and VR devices can greatly
increase the overall immersive sensation of the user in the
virtual world, thus facilitating its interaction with the robotic
system even with little technical knowledge. Therefore, our
explored solutions combine different interaction devices
such as data gloves for the grasp specification and Head-
mounted Displays for immersive visualization.

Our long-term objective is to reach new levels of human-
robot interaction in the context of autonomous underwater
intervention missions, thus improving the user’s satisfaction
and performance while using the system.
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Enhancing Collaborative Human-Robot Interaction Through
Physiological-Signal Based Communication

Susana Zoghbi, Chris Parker, Elizabeth Croft and H.F. Machiel Van der Loos

Abstract—In order to develop a friendly and safe interaction
between humans and robots, it is essential for the robot to
evaluate users’ affective states and respond accordingly. This
paper investigates the use of physiological signals to estimate
human affective states during a Human-Robot Interaction
(HRI) task. We focus on characterizing physiological responses
and understanding how affective states evolve in a collaborative
human-robot task. We propose to both design a model that
maps physiological signals to affective states in real time and
design a methodology for the robot to exhibit an appropriate
behavior during the task in response to estimated changes in
affective states.

I. INTRODUCTION

There has been a long standing interest in designing
robotic systems to help people with their daily activities:
completing chores, caring for the elderly, etc. Today, robots
primarily are found in industrial settings - isolated from
human workers - to automate tasks that are either too
dangerous or that require a greater throughput or precision
than a human worker can provide. Safe and robust human-
robot interaction (HRI) in shared workspaces, however, has
yet to be realized outside of the laboratory.

When people cooperate on a load-sharing task (e.g,
carrying a table together) they use explicit and implicit cues
to communicate with each other the actions they intend
to take, their perception of task progress, and how the
shared goal should be modified. A portion of interpersonal
communication relies on implicit cues [4]. Furthermore, the
communication/recognition of affective states is important to
and expected by cooperating humans [5]. Therefore, robots
intended to work with humans on shared tasks should be
able to perceive their human partners’ actions and intentions
conveyed in both explicit and implicit modes. Additionally, a
robot should use these modes to communicate its own plans
and intentions. The ultimate goal of our research is to develop
strategies for safe and intuitive interaction between humans
and robots by enabling the robot to recognize affective state
changes in its human partner and respond accordingly.

Several explicit and implicit cues can be used to estimate
affective states in a partner, e.g.: characteristics of speech,
facial expressions, gestures, postures, and physiological sig-
nals. This research will focus on the last of these cues to infer
affective states during HRI. Physiological signals provide
quantifiable measures that tend to be involuntary as well as
age and culture independent.

E. Croft, H. Van der Loos, C. Parker and S. Zoghbi are with the De-
partment of Mechanical Engineering, University of British Columbia, 6250
Applied Science Lane, Vancouver, Canada ecroft@mech.ubc.ca
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A. Specific Objectives

To  study  physiological-signal  based
communication between robots and people,
focus on the following four research objectives.

1) Characterize real-time human physiological responses
elicited by the robot partner in an interactive task: The time
and frequency domain physiological responses of the human
in an HRI task will allow us to determine whether or not
statistically significant changes in these parameters can be
made online and if relevant features can be extracted from
them in our HRI context.

2) Develop a model of the dynamics of the real-time
evolution of affective states during a human-robot interaction
task: While interacting with a robot, a person’s affective
state may change in response to different robot motions. We
plan to study how these changes occur over time and which
robotic stimuli elicit them.

3) Design a model to map physiological signals to
affective states in real time: A sufficiently reliable model to
map physiological responses to affective states would enable
a robot to decode important implicit cues displayed by a hu-
man partner. Moreover, it will help validate the suitability of
extracted physiological features while eliminating redundant
or useless ones. Machine-learning techniques will be used to
design such a model in real time.

4) Design a methodology for the robot to exhibit an
appropriate behavior during a collaborative task: We will
investigate appropriate responses of a robot to its human user
in specific task-oriented scenarios in response to changes in
the user’s affective state. For example, should the robot alter
its behavior if it infers a decrease in its user’s affect, and if
s0, how? We will consider how responses should be defined
and evaluated given a prescribed task context.

implicit
we will

II. LITERATURE REVIEW

There is a rich body of psychophysiological literature
related to affect estimation and the use of affect for Human-
Computer and Human-Robot Interaction domains. However,
very few studies have used the robot as the primary elicitor
of physiological responses and changes in affect. Picard
et al. [6] identified patterns in four physiological signals -
electromyography (EMG), blood volume pressure, galvanic
skin response (GSR) and respiration) - from an actor ex-
pressing eight different emotions, and were able to develop
an emotion classifier that achieved 83% accuracy. Rani et
al. [7], were able to recognize anxiety in five users based
on several physiological signals (i.e., cardiac, electrodermal
and electromyographic activity as well as temperature) using



regression trees and fuzzy logic. Estimated affective states
were compared to the subjects’ self reports. Their earlier
work was used to drive mobile robot behavior in simulated
rescue domain [8].

Liu et al. [3], using a large set of physiological features
and support vector machines, designed an affect recogni-
tion model achieving a success rate of 83% with children
with autism spectrum disorders. Kulic and Croft [2] used
Hidden Markov Models (HMM) to estimate affective state
in response to various robot motions. Physiological signals
including heart rate, GSR, and EMG. Offline questionnaires
were used to assess users’ affective states, represented using
the valence-arousal model. User-specific HMMs successfully
recognized valence and arousal better than 80% of the time.

III. PROPOSED METHODOLOGY

To achieve our first two specific objectives, we propose
to perform a series of experimental trials in which a person
and a robot perform a task together. The robot holds one
end of an object with a pointing device attached (i.e., a
laser pointer) and the person holds the other end. The human
and the robot then trace a 2-dimensional path that has been
drawn on a horizontal surface with the pointer. This task
is analogous to many real-life scenarios: for example, in
industry, a robot holds a heavy tool and the person guides
the motion; in hospitals or care homes, for the elderly or
patients who have diminished limb strength; in space station
assembly as astronauts sometimes lose tools during repair
missions. In all these tasks, the user decides when the task
is done and the robot provides assistance for the task.

A CRS A460 robotic arm (human-sized) will be used with
an ATT 6-axis force/torque sensor attached to the gripper.
Robot behavior is set by an impedance controller (similar
to that of [1]). During each trial the virtual impedance (i.e.,
mass and viscous damping), are changed randomly. The user
is instructed to trace the path in each trial for one of the
following two conditions: i) as fast as possible (speed), ii)
as accurately as possible (accuracy). It is hypothesized that
different values of the virtual parameters and/or random dis-
turbances elicit changes in affect, as the task becomes easier
or harder to perform. Throughout the experiment, several
physiological signals are collected: i.e., electrocardiography,
EMG, GSR, skin temperature, respiration rate and electroen-
cephalography. After each trial, the user is asked to fill in
a questionnaire to report their level of performance, effort,
frustration, comfort, engagement, boredom and perceived
helpfulness of the robot. Additionally, subjects will report
their affective state based on video recordings of themselves
during the trial.

To design a model to map physiological signals to affective
states in real time (objective 3), a dynamic Bayesian infer-
ence network will be used. In this model, we will consider
affective states as hidden variables and physiological signals
as a high-dimensional vector of observations. We assume
a first-order Markov process with observation variables de-
pending only on the current hidden state. The parameters
of the probability density function (pdf) of transition and
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observation are estimated using Maximum Likelihood. A
recursive algorithm is used to make estimations in the
Bayesian network [9].

Given affective state estimations, we will propose models
of how the robot should respond (objective 4). The aim is
to provide a decision-making process for the robot to ap-
propriately adjust its behavior. Machine-learning algorithms
for supervised learning will be investigated in this stage.
These methods will be evaluated through user trials. It is
expected that this will be an iterative process in which
desirable behavior of the robot in response to estimated affect
will be elucidated first from “Wizard of Oz” experiments.
Outcomes of these trials will provide input to the decision
making system that will then be evaluated in a series of trials
to explore system effectiveness as well as the effect of the
robot’s failure to respond appropriately.

IV. SUMMARY

In order to develop a comfortable and effective interaction
between humans and robots, we focus on incorporating
physiological measures as implicit cues for a robot to
both recognize affective states in its human partner and
behave appropriately. To this end, we focus on four specific
objectives: 1) Characterize real-time human physiological
responses elicited by the robot partner in an interactive task,
2) Understand the dynamics of the real-time evolution of
affective states during a human-robot interaction task, 3)
Design a model to map physiological signals to affective
states in real time and 4) Design a methodology for the robot
to exhibit an appropriate behavior during a collaborative task.
This paper has presented a brief outline on how we propose
to achieve these objectives.
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Abstract— The development of assistive robots for elderly and
disabled people is currently an active field of research in the
robotics community. An important part of making these systems
usable is to allow for multimodal Human-Robot Interaction
(HRI). However, the overall human-machine system is complex.
The user and the robot are operating in a closed loop and
both are potentially capable of adapting to the other. The
work presented here has attempted to approach the problem
from three different perspectives, investigating methods for
analyzing, implementing, and testing an enabling multimodal
interface for the ASIBOT assistive robot. It was proposed to
use principles from Information Theory as the basis for the
analysis, with the goal of increasing the information capacity
of the human-machine channel. Multimodality was identified
as one possible approach for achieving this. Methods for
performing information fusion and machine learning that might
be of interest for the implementation were identified. It was
speculated that reinforcement learning could serve as an on-
line adaptive component in the interface. Finally, the use of
standard movement models and tasks as the basis for testing
multimodal HRI was discussed and linked to typical tasks for
assistive robots.

I. INTRODUCTION

Assistive robots are currently being developed to support
disabled and elderly people inside their own homes and in
other everyday environments. One of the interesting chal-
lenges for the Human-Robot Interaction (HRI) in assistive
robotics is the broad range of users and disabilities that needs
to be catered for. Approaches to this problem range from a
simple scanning interface requiring only the actuation of a
single button to a wide range of input devices which can
be personalized for each user. However, there has been less
focus on true multimodal interaction so far. This involves
fusion of different types of input modalities in order to,
among other objectives, improve error handling and relia-
bility [1]. Some exceptions do exist however, for example in
the related field of rehabilitation robotics [2]. The ultimate
goal of the work presented here is to achieve an “enabling”
interface for the ASIBOT assistive robot, which can adapt to
and compensate for the disabilities of a given user through
the use of learning, contextual information, and multimodal
interaction.

ASIBOT is a portable assistive robot for elderly and dis-
abled people, which aims to give these users more freedom
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in daily tasks [3]. It is a manipulator robot with 5 degrees of
freedom which can climb between special docking stations
mounted in the environment as well as mount itself to a user’s
wheelchair. The current version of ASIBOT has a set of input
devices that allow the user to employ different modalities
to control the robot in joint-by-joint mode, Cartesian mode,
and to execute simple pre-programmed tasks. This includes a
joystick, a speech recognition system, a PDA menu system,
and a flexible acceleration-based pointer input device that
can be used with different parts of the body [4]. More input
device modalities are currently in development and planning,
including chin joysticks and eye tracking devices. In addition,
the current interface architecture is being extended to allow
for true multi-modal interaction. This will begin with low-
level teleoperation commands and will later be extended
to higher-level commands when a more mature level of
autonomy is available.

The work presented here is part of a framework that
has a focus on user-in-the-loop development. This aims
to increase the shared knowledge between the users and
developers of assistive robots and will hopefully lead to a
higher degree of usability for these devices. An important
aspect of this is HRI that maximizes the flow of useful
information between the user and the robot. This paper
attempts to identify methods for analyzing, implementing,
and testing an enabling multimodal interface for the ASIBOT
robot as a first step towards this goal.

II. ANALYSIS

Fig. 1 is a simplified representation of the complete
human-machine system for multimodal assistive HRI. As can
be seen in the figure, the model assumes that the user has
some intentional commands for the robot, h, that are actuated
through a set of input devices. The disabilities of the user are
modeled as sources of noise, z, which can be independent
for each input modality. The multimodal signals received by
the enabling interface, d, are thus noisy representations of
the user’s true intention. The goal of the enabling interface
is to use these noisy signals and time copies thereof, together
with information from the context (e), to produce robot
commands (m) that are as close as possible to the user’s
original intention. The user receives noisy feedback about
the state of the robot, x, closing the loop. Feedback from the
state of the input devices (visual and/or proprioceptive) is
omitted for clarity in Fig. 1. Both the user and the interface
are assumed to potentially be able to perform some form of
adaptation and learning.

One interesting approach to analyzing complex closed
loop systems like the one shown in Fig. 1 can be found
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Fig. 1. The problem statement for multimodal assistive HRI.

in [5]. This is based on representing a complete control
system as a directed acyclic graph of random variables and
analyzing it using concepts from Information Theory [6].
The system includes the current state X, with values x € X,
and the future state X’. The random variable representing
the controller, C, then senses the current state and actuates
to achieve the future state. This can be represented by
conditional probabilities, p(c|x) and p(z’|z,c). These can
be viewed as representing a sensor and actuation channel,
respectively. The authors were further able to derive the
conditions for observability, controllability, and optimality
using this method.

Fig. 2. The human-machine system as a directed acyclic graph.
Fig. 2 depicts our extension of this method to the human-
machine system. The controller C here includes both the user
(more generally the Human, H) and the assistive robot (more
generally the Machine, M). The goal of the human-machine
system in the most general sense is then to maximize the
flow of useful information between the human and the
machine over a noisy medium. Thus, we are interested in
the communication channel existing between a source H and
a receiver M, which will be denoted the “human-machine
channel” in the following discussion and which has channel
capacity Cprps. The information available in the source can
be represented by the Shannon entropy per second of the
random variable representing the human, here denoted as
Hiruman- The definition for entropy used here is shown in
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In Information Theory terminology the stated goal is then
equivalent to transmitting this information over the human-
machine channel with a minimum of errors. Chan and
Childress [7] also applied information theory principles to
analyze the information transmission in the human-machine
system for tracking tasks. The analysis here differs in that it
entails multimodality as well as learning, and is applied on
the directed acyclic graph representing the system.

More specifically, the goal of the work presented here can
be defined as maximizing the flow of useful information
between the user and the assistive robot, given the user’s
physical disability. As can be seen in Fig. 2, the disability
is also here modeled as a source of noise, Z. The random
variable representing a given input device, D, will then
depend probabilistically on both the user’s true intentions,
H, and the noise Z. A model with a user both mentally and
physically healthy will not include this noise. Assuming that
input devices with sufficient performance are available to the
user, we would then have Hpyman < Cpar. As stated in
the channel coding theorem [6], there exists a coding system
for this situation such that the information from the source,
the user’s intended commands, can be transmitted with an
arbitrarily low error.

The interpretation of a mentally healthy, but physically
disabled user attempting to control a complex system like an
assistive robot is then that of a source rich in information, but
acting over a human-machine channel with limited channel
capacity. In other words, a situation where Hpyman >
C'iras . From the channel coding theorem we know there is no
way to transmit information over the human-machine channel
with errors smaller than H gyman — Crar. However, we also
know that encoding can keep the errors close to this value.
Thus, there are in reality only two ways of augmenting the
flow of information between the user and the robot. One
is to increase the capacity of the human-machine channel.
Another is to enable an efficient encoding. There are several
potential approaches to achieve the former. One is to increase
the number of input devices, enabling multimodal interaction
with the user. This situation is depicted in Fig. 3. Two other
might be using information about the context and information
from past user inputs. These will not be described further
here.

The main purpose of multimodality is then here to reduce
the number of errors introduced by the disability of the user.
The most obvious way to achieve this from an engineering
standpoint would be through highly synchronized and redun-
dant commands from the different modalities. That is, the
user will simultaneously coordinate the different modalities
so as to make his/her intention clearer to the system. A
question that immediately arises is whether this increased
need for organization would also reduce the output of the
user, in effect reducing the information available in the
source of the human-machine channel. The answer will
probably depend on the type of modalities to coordinate. In
fact, many forms of multimodal interaction do not involve
redundancy of content nor simultaneous signals [8].

However, the procedure followed here is to begin with
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through input device redundancy.

low-level commands and teleoperation. The most typical in-
put devices for this purpose will involve physical movements
made by the user, although distinct modalities like elec-
tromyography (EMG), electroencephalography (EEG) and
speech are also possible, see [9] for an insightful comparison.
Looking at the literature on bimanual human movements,
there are indications that symmetrical and synchronous
movements of the two hands are not much slower than
those using just one hand. For example [10], where there
was no significant difference in the time taken to reach
to two distinct targets (but with similar difficulty) than to
one, although the reaction time increased. This is related
to the idea that such bimanual movements share a common
planning in the nervous system, at least for movements of
equal duration of the two limbs [11]. As the user here would
in essence be controlling the system on the same task with
the different modalities, this finding might be applicable.
Whether it also extends to movements of other parts of the
body (for example head and shoulder movements) is not
clear, but not entirely unlikely.

In the end, a multimodal interface for an assistive robot
will need to cater for both redundant and complementary
information coming from the user, with different degrees of
synchronization between them. The requirements will likely
differ with high- and low-level commands, with the latter
having a higher degree of synchronization and simultaneity
of commands. It will also likely vary with the specific
disability of each user. Compared with users that have no
disabilities, the users of assistive robots might require a
higher degree of redundancy of modalities to overcome the
extra errors introduced by the disability.

III. IMPLEMENTATION
A. Requirements

This section attempts to outline methods for addressing
the requirements for the multimodal enabling interface. From
our analysis we can identify the following capabilities that
would be beneficial to include in the final system:

o Allow for multimodal interaction
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Make use of contextual information

Learn and adapt to user, online and offline
Be easily adjusted to different users

Be easily verified experimentally

From these requirements it can be seen that both an
element of information fusion and learning will be required.
These are addressed in section III-B and III-C, respectively.

B. Information Fusion

Multimodal interfaces require the fusion of information
from a range of input devices, where the data may arrive at
different times and be very different from device to device.
This is a similar problem to that faced in the field of
sensor fusion, where a range of disparate sensors readings
arriving at different times are used to improve the estimate
of the state of one or several systems. For example the
location and orientation of a mobile robot with respect to its
environment. Sensor fusion in general is an expansive field
and includes many different methods. One of the approaches
used is Bayesian sensor fusion. For a system to be considered
Bayesian it must have three characteristics [12]. One is a
prior distribution, p(A), representing the state of the system,
A, before receiving the current set of data from a sensor, B.
Another is a likelihood function, p(B|A) that characterizes
the information in the sensor. Bayes’ theorem then allows
for the calculation of the posterior, p(A|B), the probability
of the system having state A given the current sensor reading
B. Assuming n independent sensor readings to be fused, B,
the posterior can be written as in (2).

n
p(A|B) x p(4) > p(Bi|A) )

(2

Applied to a multimodal interface, the sensor readings can

be interpreted as the noisy data coming from the different
input devices and the state as the true intention of the user.
For the graphs in Fig. 3 it could be visualized as updating
the belief of H with knowledge of the values of the » input
device signals D. This is a simple example of the insights
that can be gained with Bayesian sensor fusion but does
not necessarily represent an algorithm for achieving this in
practice. It is interesting to note that Bayesian integration of
information has also been suggested as the driving principle
behind sensorimotor learning in humans [13].

C. Learning

Learning is another important aspect of assistive HRI.
There is ongoing work on using machine learning to attempt
to reduce the effect of a user’s disability in daily tasks.
This includes adaptive filters, for removing the effects of
tremorous movements from the control signal or for physi-
cally counteracting the tremor [2]. Tremor reduction is also
important in medical robotic applications [14]. There are
also approaches that aim to adapt to other disabilities that
cannot easily be separated from the user’s intended signal
in the frequency domain. For example, a weak left driving
signal or inaccurate commands. This work has previously



been focused mainly on the problem of assisted wheelchair
driving.

For example, using information on the context of operation
to better understand the intent of the user [15]. This work
was based on global trajectories to locations of interest in the
environment. Each time step a set of potential user plans were
calculated, based on the most likely trajectory to each of the
points of interest. However, knowing the likelihood of a user
plan given the user’s current and previous input is difficult
to infer directly. By using Bayes’ theorem the problem was
reduced to estimating the likelihood of the current user input
given that the user had a specific plan in mind. This could
readily be estimated from how different the user’s commands
were from those estimated for that plan at that moment. The
commands corresponding with the most likely plan was then
fused with the user’s commands in a shared control scheme.

A related approach has attempted to also learn a general
model of the user’s disabilities [16]. This work utilized a
form of supervised learning, Gaussian processes, to learn
the way a specific wheelchair user performed a set of local
trajectories (not to global points of interest but rather a set of
integrated velocity commands). This knowledge could then
be utilized in estimating the probability that this specific
user would give the current input, given that he/she had
a specific local plan in mind. The resulting system was
trained on recorded user data and tested for plan recognition
performance on a set of the same data with encouraging
results.

It may also be possible to extend this method to higher
Degree-Of-Freedom (DOF) movements, although there are
several potential issues. In the original work one Gaussian
process was used for the linear and one for the rotational
velocity, which could mean 6 Gaussian processes if extended
to typical robot manipulator control. The number of possible
user trajectories would also increase dramatically. In addi-
tion, learning and adapting to the user is complicated by
the fact that a user’s behavior depends on the behavior of
the system under control. Thus, the complete human-robot
system can be seen as two learning systems attempting to
adapt to each other. This may not necessarily favor off-line
learning. On-line simultaneous learning by the human and
the robot should probably also be allowed for. This could
also include learning the way a given user combines the
different input devices of the multimodal interface. Usable
adaptive multimodal interfaces have indeed been identified as
important future work in the field of multimodal interaction
[1].

Reinforcement learning [17] is a form of learning more
geared towards online applications. This method is in essence
based on a learning agent with a trial-and-error behavior,
exploring the environment by performing actions on it and
learning from the rewards (and penalties) returned. These
rewards can be of a very simple and high-level nature, for
example large and positive if the system has achieved a
goal state and negative every step until that time. It could
be interesting to also explore this learning method for the
enabling interface envisioned here. The learning could be
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performed on simple tasks online with the user (and possibly
offline), where the reward could be provided to both the user
(by displaying a visual representation of the goal state) and
the system (a numerical reward for achieving the goal state).
There are several open questions about the application of this
type of learning for interacting with a real user however. This
includes the number of learning episodes required and the
continuous nature of the user inputs and robot commands.
Reinforcement learning with continuous states and actions
is still active research, although successful applications do
exist [18].

IV. TESTING

A. Task Selection

Multimodal human-robot interfaces like the one investi-
gated here require testing. During development it can be
used to effectively evaluate changes to the system. It is also
required to document the potential benefit of the interface to
the rest of the research community. The selection of the task
to use as a basis for this testing can influence the value of
the results obtained. Application-specific tasks are typically
used for this purpose at the moment. For example, the work
of Tsui et al. on combining a pointing device and a camera-
screen pair [19]. This system was tested with disabled users
on a typical domestic task for a wheelchair-mounted robot
system, selecting and approaching an object (from several)
in a bookshelf. Measures included the time to completion
but also expert- and user-completed evaluations.

For the lower-level commands and teleoperation consid-
ered here comparisons of interfaces are typically also done
on application-specific tasks. This may be sufficient if the
tasks are limited and well known. However, assistive robots
are typically intended for use in a user’s daily environment.
This environment can thus vary from user to user and is
difficult to specify at design time. This makes it harder to
come up with a representative set of tasks for a comparison
of assistive HRI.

There also seem to be limitations on the conclusions that
can be drawn from the results obtained with application-
specific tasks. How can we be sure that the interface with
the best performance on picking up a bottle of soda from a
desktop is also the best on opening the refrigerator door? In
other words, how can we know that our results are gener-
alizable? In addition, application-specific tasks can in many
cases include a component of user interpretation, for example
the many ways to approach and grasp an object. How can
we ensure that an increase (or decrease) in performance after
a change in the interface is due to the change itself and not
of the user interpreting the task differently?

Another approach is to use a more general task that is
still similar to the one intended, like a peg-in-the-hole task.
However, It would still be beneficial to have a reliable
measure of the difficulty of the task. One potential solution
could be to simplify the tasks into a set of primitives which
have such a measure, and that can then be used as the basis
for performance evaluation. Section IV-B outlines some of
the ISO standard simplified tasks that can be adopted for



this purpose, while section IV-C discusses how these relate
to typical assistive robot tasks.

B. Simplified Tasks

Since its original publication, Fitts’ law [20] has been
an important tool in modeling the speed/accuracy trade-off
in simple human movements. As seen in (3a), the model
predicts that the Mean Time (MT) to complete a movement
varies linearly with the Index of Difficulty (/D). This index
is a function of the distance moved and the accuracy require-
ment, or tolerance, on the movement. These are denoted as
the distance of movement, D, and the width of the target area,
W, respectively. The standard formulation for ID is shown
in (3b).

MT=a+b-1D (3a)
D
IDrins ~ loga (5 +1) Gb)

ID has units of bits and has roots in Information Theory.
In fact the original interpretation of the law was as a measure
of the information capacity of the human motor system.
Typically the application of Fitts’ law is in simple left to
right movements of the hand. An example can be seen in Fig.
4. The coefficients a and b are determined experimentally
using a linear regression analysis. The slope coefficient b
then becomes a measure of the rate of change of completion
time with change in the difficulty of the task. The reciprocal,
1/b, is known as the Index of Performance (/P) and has
units of bits/second. In other words, human performance
for a task with a given distance and accuracy requirement
can be predicted on the basis of observations of other such
combinations.

Fig. 4. Standard task for Fitts’ law.

The version of Fitts’ law used here was first proposed by
[21] and is the basis for performance testing in ISO 9241-9
[22], which covers ergonomic requirements for non-keyboard
computer input devices. Fitts’ law has been used extensively
in the field of Human-Computer Interaction (HCI) to quantify
performance and drive graphical user interface design. The
law is also commonly used in comparisons of input devices,
where it provides the capability to generalize about results
beyond a specific task. In fact, Fitts’ law remains one of very
few hard quantitative tools available to designers of human-
machine interfaces, even though it is today considered more
as an empirical regularity than as a model of the underlying
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mechanics of human movement. Multidimensional versions
of the law have been developed, including pointing in 2D
and 3D. Rotational movements based on Fitts’ law tasks have
also been explored.

IDSteering - E
“)

where :
w=~%k-—>.

Equation (4) shows the related steering law [23], which
is an extension of the reciprocal or discrete movements in
Fitts’ law to continuous trajectories. By in essence applying
an infinite number of Fitts’ law task goals along a given
trajectory, human performance for steering down 2D cor-
ridors of different shapes with computer input devices can
successfully be modeled. See Fig. 5 for the standard straight
task.

k-
L_¥_

e

Fig. 5.

A 4

Standard straight task for the steering law.

C. Relating Simplified Tasks to Robot Tasks

The simple models presented in the previous section has
been used successfully in a wide range of simple tasks and
for a wide range of users. However, it is not clear if they are
also representative of the movements required of an assistive
robot. The first issue that arises is whether a complex task
like placing a can of soda in a kitchen cabinet can be approx-
imately represented by a set of such movement primitives.
As both Fitts’ and the steering law are typically applied in
planar environments, it is useful to begin the discussion with
a planar simplified representations of an assistive task, see
Fig. 6. Assuming there are relatively few items in the cabinet,
the above task can probably be considered planar, as the
out-of plane restrictions are relatively loose in comparison
to those in-plane. An interpretation of the task could be that
of an initial gross Fitts’ law movement to the edge of the
opening between two shelves (4 to B). This would then be
followed by a steering-based movement between the two
shelves and possibly with a Fitts’ law requirement for the
final placement to avoid hitting the end-wall (B to C).

There are few guarantees that the time taken to perform a
complex movement could be accurately modeled by such a
decomposition into simpler movement primitives. However,
even an approximate model is probably better than the
alternative of comparing performance on tasks without any
measure of the difficulty of the task. The better the model
of the task the less variability not related to the task will be
observed, reducing the effect of external factors on the results
and increasing the amount of “control” in the experiment.
Another potential benefit is that the difficulty of the task
can be approximately quantified in units of information,
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Fig. 6. Example of a planar, simplified representation of an assistive robot
task; placing a can on a shelf in a cabinet.

bits, given the Information Theory roots of the two laws.
The amount of information flowing between the human and
the machine (bits/second) could then perhaps be said to
be maximized when the user has minimized the time (in
seconds) to complete the movement of a given number of
bits.

V. CONCLUSIONS AND FUTURE WORKS

An attempt was made to identify methods for analyzing,
implementing, and testing a future multimodal enabling in-
terface for the ASIBOT robot. Information Theory concepts
were found to be of interest in analyzing the human-machine
system. For example, by defining the goal of the human-
machine interface as transmitting the information represent-
ing the intention of the user over the noisy human-machine
channel with a minimum of errors. The disability of the user
was represented as the noise in the channel. Multimodality
was identified as one of the potential approaches to achieve
this, in particular synchronized and redundant signals from
several input devices. A brief investigation into potential
methods for implementing the requirements from the analysis
was also performed. This included information fusion and
learning methods. For the latter, supervised learning in the
form of Gaussian processes was identified as a potential
candidate. However, reinforcement learning is also of interest
for its online applicability. The requirements for being able
to test a multimodal enabling interface were also explored.
It was speculated that using application-specific tasks for
testing the system without a good measure of the difficulty
of the task could make the results difficult to generalize
upon. Leaning on experimental comparisons of computer
input devices a suggestion was made for using well-proven
experimental paradigms such as Fitts’ law for the testing.
It was speculated that more complex application-specific
tasks could be approximately modeled by an appropriate set
of such simple movement primitives. The future work will
include implementation of a set of modules for achieving an
enabling multimodal interface for ASIBOT and pilot studies
to evaluate the methods highlighted and the assumptions
made.
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Humanoid robot skill acquisition through balance interaction between
human and humanoid robot

Jan Babt and Erhan Oztop

Abstract— Humanoid robots are intrinsically unstable mech-

anisms. To achieve a desirable full-body skill of the humanoid T

robots we propose a framework where we use the human L —des [ Dested ]
demonstrators real-time action to control the humanoid robot
and to sequentially build an appropriate mapping between
the human and the humanoid robot. This approach requires
the state of the humanoid-robot balance to be transfered to
the human as the feedback information. Two example skills
obtained by the proposed framework are described. Fig. 1. (A) Human demonstrator controls the robot in closed loop and
producesthe desired trajectories for the target task. (B) These signals
I. INTRODUCTION are used to synthesize a controller for the robot to perform this task

- L. . autonomously.
Human ability to imitate skills and tasks demonstrated

by other humans is an important method of learning. If

the robots were able to imitate human motions in the sameo phase process. In the first phase a human demonstrator
fashion, acquisition of complex robot skills would becomeerforms the desired task on the humanoid robot. In the
very straightforward. One could simply transfer the motiosecond phase the obtained motions are acquired through
of a human demonstrator to a humanoid robot using machine learning to yield an independent motor controller.
type of real-time motion capture system but due to th&he two phases are shown on Fig. 1.

different dynamical properties of the humanoid robot and Herewith we present two example skills that were obtained
the human, the success of this approach largely dependsignthe described framework.

the ad-hoc mapping implemented by the researcher [1]. As

the humanoid robots are intrinsically unstable mechanisms, Il. FULL-BODY REACHING

such mapping would have to be a sort of full-body balance The proposed approach can be considered as a closed
algorithm which would modify the desired motion of theloop approach where the human demonstrator is actively
human demonstrator to ensure the postural stability of thacluded in the main control loop as shown on Fig. 2. The
robot. Needless to say, the design of such algorithms israotion of the human demonstrator was acquired by the
very demanding task. contact-less motion capture system. The joint angles of the

Here we propose an alternative approach where we ugdemonstrator were fed forward to the humanoid robot in real-
the human demonstrators real-time action to control théme. In effect, the human acted as an adaptive component
humanoid robot and to consecutively build an appropriatef the control system. During such control, a partial state of
mapping between the human and the humanoid robot. Thise robot needs to be fed back to the human subject. For
approach can be seen as a closed loop system where #natically balanced reaching skill, the feedback we used was
demonstrator actively controls the humanoid robot motion ithe rendering of the position of the robot’s centre of mass
real time with the requirement that the robot stays balanceguperimposed on the support polygon of the robot which
This setup requires the state of the humanoid-robot balang@s presented to the demonstrator by means of a graphical
to be transferred to the human as the feedback informatiogisplay. During the experiment the demonstrator did not see
We implemented two different types of feedback. the humanoid robot.

The proposed closed-loop approach exploits the humanThe demonstrator’s task was to keep the center of mass
capability of learning to use novel tools in order to obtain @f the humanoid robot within the support polygon while
motor controller for complex motor tasks [2], [3]. The robotperforming the reaching movements as directed by the exper-
that is controlled by the demonstrator can be considered asn@enter. With a short practice session the demonstrator was
tool such as a car or a computer mouse when one uses it #isle to move his body and limbs with the constraint that
the first time. The construction of the motor controller is ghe robot's center of mass was within the support polygon.

. . . Hence the robot was statically stable when the demonstrator
This work has been suported by Japanese Society for Promotion of Sci-

ence and Slovenian Ministry of Higher Education, Science and Technoloég)enerated motions were either imitated by the robot in real-

~Jan Bahbt is with Jozef Stefan Institute, Ljubljana, Sloveniatime or played back later on the robot. The robot used in the
jan. babic@js.si _ _ _ study was Fujitsu HOAP-II small humanoid robot.

Erhan Oztop is with ATR Computational Neuroscience Laboratories, JST- Th . fthe h id rob ined h
ICORP Computational Brain Project, NICT Biological ICT Group, Japan € motion of the humanoid robot was constrained to the

erhan@tr.jp two dimensions; only the vertical axis and the axis normal
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Fig. 2. Closed-loop control of the humanoid robot. Motion af thuman is 201}
transfered to the robot while the robot's stability is presented to the human
by a visual feedback.
15+
to the trunk were considered. The light wiggly curve on 10+
Fig. 3 shows the robot end-effector position data which
was generated by the demonstrator. One can imagine the

5 1
humanoid robot from its left side standing with the tips of -20 '1/0 0
the feet at the centre of the coordinate frame and reaching Xg'om
out outwards with its right hand gliding over the curve. The

: -~ Flg. 3. The obtained end-effector trajectory generated bydgmonstrator
long straight segment of the curve connects the begmmrﬁ:@ht wiggly curve) with the desired end-effector trajectory that was used

and the end of the reaching motion. as the input for the joint angle prediction and the generated end-effector
For each data point of the obtained end-effector trajectoriyajectory obtained by playing back the predicted joint angle trajectories on

the robot joint angles were recorded. Assuming rows of thg® numanoid robot.
humanoid robot end-effector positiod is formed by the
data points taken from the obtained end-effector trajectofynere X+ represents the pseudo-inverseXofThe residual
and the robot joint angle® is formed by the corresponding gryor is given by
joint angles we get a non-linear relation of the form
tr (XW —Q) (XwW —Q)T). (6)

Q=r(X)w. 1) : . . . .
In effect, this establishes a non-linear data fit; given a desired
By performing a non-linear data fit and solving féf we end-effector positiore, the joint angles that would achieve
can afterwards make prediction with this position are given by

Gpred = I (Tdes) W 2) dpred = ( P1(@des) P2(@des) - In(Tdes) )W.  (7)

where gpeq is @ vector of the predicted joint angles andThe open parameters af as the number of basis func-

Zges IS a vector of the desired end-effector position. Usingions which implicitly determinegu; and the variances?.

the prediction we can afterwards ask the humanoid robot fithey were determined using cross-validation. We prepared

reach out for a desired position without falling over. a Cartesian desired trajectory that was not a part of the
For non-linear data fitting the recorded positiodsare recording data set and converted it into a joint trajectory

mapped into an N dimensional space using the Gaussiafth the current set values @N,d?). The joint trajectory

basis functions given by was simulated on a kinematical model of the humanoid robot
— producing an end-effector trajectory. The deviation of the
di(x)=e oz (3) resultant trajectory from the desired trajectory was used as

measure to choose the values of the open parameters.

Fig. 3 shows the desired end-effector trajectory and the
generated end-effector trajectory obtained by playing back
the predicted joint angle trajectories on the humanoid robot.

wherey; ando? are open parameters to be determined. Eac%
row of X in converted into amN dimensional vector forming
a data matrix

¢1(x1) ¢P2(x1) ... On(x1) The light wiggly curve on Fig. 3 represents the end-effector

¢1(x2) ¢2(x2) ... On(x2) trajectory that was generated by the human demonstrator
Z=T(X)= : : . : (4) in the first phase and subsequently used to determine the

01(zm)  Po(wm) O (zm) ;ﬁﬁéﬁ?w between the joint angles and the end-effector

Assuming we have a linear relation between the rowZ of The reaching skill of the humanoid robot we obtained

andQ, we can solve (2) fokV in the sense of the minimum was statically stable which means that the robot’s centre

least squares by of mass was inside the robot's support polygon. However,
W=X"Q (5) when the robot was asked to track a trajectory at speeds
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I1l. IN-PLACE STEPPING

4
3

In this section, we present our preliminary work on per-
forming a statically stable in-place stepping of the humanoid
robot. In-place stepping is a task that requires an even stricter
balance control than the reaching experiment described in the
previous section. In order for the humanoid robot to lift one
o of its feet during the statically stable in-place stepping, the

timels robot’s centre of mass needs to be shifted to the opposite leg
' ' ' before the lifting action occurs. As the robot’s centre of mass
is relatively high and the foot is relatively small, it is crucial
that the position of the centre of mass of the robot can be
precisely controlled. For humans, to maintain the postural
stability is a very intuitive task. If one perturbs the posture
of a human, he/she can easily and without any concious
effort move the body to counteract the posture perturbations
and to stay in a balanced posture. The main principle of
our approach is to use this natural capability of humans to
F;]g- 4. 'T:he sta?EJ!Iiwlof tzebhulznangifcri robot Wh%n t\f;\tlehciml;lmiagtory maintain the postural stability of the humanoid robots. In
?asi\,lvtrr]ltlandylr?:rrr?icsI:ffei{searea:o I?)tnglere :lir;;tli?;?lﬁz ass und(:‘arrllitneedr(l:))ytzltmren 3@(«*0‘” to do so, we deglgned and manufactured "fm mdm_mg
below 0 at around 4 seconds in the lower plot. parallel platform on which a human demonstrator is Standlng

during the closed-loop motion transfer (Fig. 6).

Instead of using visual information for the robot’s stability
significantly higher than the speed of the demonstrator, thas previously explained in the reaching experiment, the state
dynamics played a non-negligible effect. This can be see the humanoid robot’s postural stability is feed-back to the
from Fig. 4 where the upper plot shows the stability whefuman demonstrator by the inclining parallel platform. When
the circular trajectory tracking was performed at 1H the humanoid robot is statically stable, the platform stays in
When the motion was performed at twice speed, the robat horizontal position. On the contrary, when the centre of
became unstable as shown in the lower panel of Fig. 4. Theass of the robot leaves its support polygon and therefore
robot could still track the desired trajectory without fallingbecomes statically unstable, the platform moves in a way that
over, but just barely. puts the human demonstrator standing on the platform in an

A sequence of video frames representing the staticallynstable state that is directly comparable to the instability of
stable autonomous trajectory tracking obtained with ouhe humanoid robot. The human demonstrator is forced to
method is shown on Fig. 5. correct his/her balance by moving the body. Consecutively,

o
o

o
~

o
N

relative static stability measure

o

relative static stability measure

Fig. 5. Video frames representing the statically stable riegcimotion of ~ Fig. 6. Inclining parallel platform that can rotate arountlthtee axes.
the humanoid robot obtained with the proposed approach. The diameter of the platform is 0.7end is able to carry an adult human.
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motor commands may not be available to the robot or the
differences between the demonstrator’s body and the robot
are so big that a direct transfer of motor commands is not
possible. One way of solving this problem is to modify
the motor commands produced by the demonstrator with
a sort of a local controller. The situation in our approach
is different because the correct motor commands for the
robot are produced by the human demonstrator. For this
Fig. 7. The human demonstrator and Fujitsu Hoap-3 humanoid mreot CONVenience, the price one has to pay is the necessity of
shown during the in-place stepping experiment. The video frame on the Idftaining to control the robot to achieve the desired action.
e e e e b enpaBasicaly instead of expert robot prograrmiming our method
during the one foot posture. relies on human visuo-motor learning ability to produce
the appropriate motor commands on the robot, which can
be played back later or used to obtain controllers through
as the motion of the human demonstrator is fed-forward tmachine learning methods as in our case of reaching.
the humanoid robot in real-time, the humanoid robot gets The main result of our study is the establishment of
back to the stable posture together with the demonstratéhe methods to synthesize the robot motion using human
Using some practice, human demonstrators easily learngguo-motor learning. To demonstrate the effectiveness of the
how to perform in-place stepping on the humanoid robot. Theroposed approach, statically stable reaching and in-place
obtained trajectories can afterwards be used to autonomoushgpping was implemented on a humanoid robot using the
control the in-place stepping of the humanoid robot. Ouintroduced paradigm.
future plans are to extend this approach and use it for V. ACKNOWLEDGMENTS
acquiring walking of the humar'1'0|d robots. Fig. 7 §hows The authors gratefully acknowledge Bladajdinjak for
the_human _demonstrator _and Fupts_u Hoap-3 humanoid mb(?érrying out the in-place experiment.
during the in-place stepping experiment.
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Robot Reinforcement Learning using EEG-based reward signals

I. Iturrate,

Abstract— Recent works suggest that several human cognitive
processes elicited during the observation and monitoring of
tasks developed by others could be used for robot task learning.
These works have demonstrated that human brain activity
can be used as a reward signal to teach a simulated robot
how to perform a given task in very controlled situations. The
open question is whether this activity is potentially usable in a
real robot context. This paper gives evidence that: (a) a brain
discriminative response is also elicited during the observation
of a correct/incorrect operation of a real robot, (b) this response
is consistent along different subjects, (c) it is possible to learn
a classifier that provides online categorization with enough
accuracy (between 85-90%) to implement simple reinforcement
learning algorithms based on these signals. Experimental results
have been obtained with 3 subjects observing the operation
of a 5 dof robotic arm performing correct/incorrect reaching
tasks, while an EEG system recorded their brain activity.
The presence of these brain patterns during the observation
of real robot operation opens the possibility to use human
brain activity for developing learning robots able to adapt
themselves to the task and user’s preferences based on the
implicit judgment of the task made by the human.

I. INTRODUCTION

Robot learning has recently emerged as a paradigm where
robots acquire new skills during operation, and improve
their performance with experience. One of the most com-
mon frameworks is reinforcement learning methods (RL)
[1], which have been successfully applied to learn motor
behaviors and motion primitives among many other skills [2].
RL methods are based on an optimization process to compute
a policy that maximizes the long-term reward while acting
in the environment. This is done through an iterative process
where the robot executes a sequence of actions, receives
the corresponding reward signal and uses it to improve the
current estimate of the policy.

The reward signal encodes the degree of accomplishment
of the executed action. In practice, the engineer has to define
this reward and, in some situations, build an ad-hoc system
(e.g. a tracking system) to compute it or supervise the task
to manually provide it. There are two shortcomings with this
approach. The first one is that the programmer has to define
the reward signal and devise a way to measure it, what can
be challenging when the evaluation of the robot operation
is subjective or when dealing with very complex systems.
The second one is that the skills learned by the robot are
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the result of the programmer’s experience, while in human-
centered robotics the programmer is not the final user. Under
this last condition, the operation of the robot needs to adapt
its operation to the user preferences and not to engineer’s
ones.

An alternative approach to achieve this end user adaptation
is to use brain activity to capture the final-user perception
of the robot operation and compute the reward based on this
activity. The advantage of this new concept is: (a) the defini-
tion of the correct/incorrect operation is provided directly by
the human understanding of the task. Furthermore, it occurs
in a transparent manner even in complex systems where
it would be difficult to model the reward; (b) the system
exploits the activation of the areas related to monitoring
and error processing and, therefore, is in theory scalable
and applicable to a variety of different robot tasks; and (c)
this robot learning concept captures task subjective aspects
that depend on each user, which is a firm step towards
the individualized operation (human-centered robotics). The
work in [3] demonstrated that human brain activity can be
used as a reward signal to teach a simulated robot how to
perform a given task in very controlled situations. However,
the open question is whether this framework is potentially
usable in a real robot context, that is, if the error mechanisms
of the brain are also elicited by observing a real robot
operation. This paper addresses this crucial question for the
applicability of this type of techniques within the field of
robotics.

Based on an experiment with a real robot, this paper
provides evidence that: (a) the brain areas that play a
role in detection and monitoring of errors also play a role
when observing the operation of a real robot; (b) a brain
discriminative response is elicited during the observation of
a correct/incorrect operation of a real robot, (c) this response
is consistent along different subjects, (d) it is possible to
learn a classifier that provides online categorization with
enough accuracy to implement simple reinforcement learning
algorithms based on these signals.

The remainder of the paper is organized as follows.
Next section discusses related work from neurophsysio-
psychology, brain-computer interfaces and robotics. In Sec-
tion III, we describe the experiment that allow us to record
the EEG data. Section IV analyzes the data from a neuro-
physiologyical perspective to evaluate the presence of error-
related brain responses. Section V and Section VI present
the signal processing and machine learning algorithms used
to classify the signal and the results obtained from the exper-
iment dataset. Section VII demonstrates the applicability of
these results to a real robot learning task. In Section VIII, we



draw the conclusions and comment on future developments.

II. RELATED WORK

This paper studies the applicability of human cognitive
processes related to the error monitoring to robot learning.
This study has three main axes. The first one is to address
the neurophysiological and cognitive mechanisms underlying
the human detection and monitoring of errors. The second
one is the application of these principles within a brain-
computer interface framework, which integrates online signal
processing and machine learning for the detection of these
brain processes. The third one is to show the applicability
of this error recognition for a robot reinforcement learning
task. We next discuss related work on each of these three
axes.

Roughly speaking, there are two types of brain electrical
activity. The Event-Related Potentials (ERP) are signals that
are elicited by means of an internal or external event, while
the rest of the activity is usually referred to spontaneous
rhythms. In cognitive neuroscience and neuropsychology, it
is well known the usage of the ERP to study the underlying
mechanisms of the human error processing, sometimes re-
ferred to Error-related Potentials (ErrPs) [4]. This is because
the observation/execution of an incorrect action for the user is
the event that triggers a particular activity or potential, which
codifies the cognitive error information when the human is
expecting a given outcome or performance.

Different ErrPs have been described, for instance, when a
subject performs a choice reaction task under time pressure
and realizes that he has committed an error [5] (response
ErrPs); when the subject perceives an error committed by
another person (observation ErrPs) [6]; when the subject
delivers an order and the machine executes another one [4]
(interaction ErrP); and recently when the subject perceived an
error committed by a simulated robot [3]. These error-related
processes involve the activation of a specific area of the brain,
called anterior cingulate cortex (ACC), Brodmann areas!
24, 32 and 33. Evidence for the role of the ACC as been
involved in the error detection process comes from consistent
observations of error potentials uniquely generated within
the ACC upon error occurrences [8]. One of the objectives
of this paper is to give evidence that the observation of the
operation of a real robot involves the activation of the ACC
during the error pontentials associated to the robot erroneous
operations.

The next objective is to build a real-time system to
measure, identify and use this error information, usually
known as Brain-Computer Interface (BCI). These systems
acquire the brain activity and convert it into external actions
or signals that can be used to perform several tasks. Usually,
the signal is recorded with a non-invasive method called
electroencephalography (EEG), which uses several sensors
placed on the scalp. EEG-based BCIs have succesfully been
used in communication tasks such as a speller [9], to move

I'The brain cortex can be divided in areas or regions defined according to
its cytoarchitecture (the neurons’ organization in the cortex). These zones
are called Brodmann Areas (BA) [7], and are numerated from 1 to 52.
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an arm prosthesis [10], or to drive a robotic wheelchair [11],
[12]. The key of the success of these systems is to determine
the appropriate neurophysiological response that can be
identified and used to achieve a particular goal. The nature
of the EEG measurements (noise, artifacts, poor spatial
resolution, inter-subject variation) makes this a difficult task
for most of the brain processes and requires the use of signal
processing and machine learning algorithms. In the context
of this paper several works have shown that it is possible
to perform automatic single trial classification of several of
the error-related potentials mentioned above [4], [13]. In this
paper, the second objective is to show that it is possible to
learn a classifier that provides online categorization of the
errors potentials elicited during the observation of the robot
with enough accuracy (i.e. it is feasible to build a BCI that
discriminates online the robot operation).

Finally, the last relevant aspect of this work is the appli-
cation of these potentials to develop adaptive systems. Up to
our knowledge, there are only two works that have addressed
this problem and both of them did it in simulation. The
work in [14] designed a two-actions scenario where a cursor
moved right or left towards a target. Interaction potentials
were detected online and used to modify the probability of
each action. In particular, the probability of an action was
increased (decreased) when a correct (wrong) action was
detected. In [3], the authors proposed the use of online error-
related potentials as a reward signal for a Q-learning RL
algoritm. The setup of this experiment is somehow more
interesting for robotics, since the human was observing a
simulated robot arm performing a discrete number of actions.
Their results suggest that there may be information within
the EEG measurements to differentiate more subtle aspects
such as the laterality and degree of errors. Unfortunately,
as the authors pointed out, their analysis was limited due
to the presence of artifacts that hinder the evaluation of the
activation areas involved in the process and limited the tem-
poral window that could be used for automatic classification.
This paper makes a step forward and shows that this type of
activity is also present when observing a real robot and that
can be automatically detected and used in a reinforcement
learning context.

III. PROTOCOL AND DESIGN OF THE EXPERIMENT

This section describes the design of the main experiment
of the paper. The objective is to collect the EEG to deter-
mine: (a) if a specific brain potential is elicited during the
observation of a correct/incorrect operation of a real robot,
and if this response is consistent among different subjects?;
and (b) if it is possible to learn a classifier that provides
online categorization with enough accuracy, to evaluate the
feasibility of a online brain-computer interface.

In the experiment, it was used a Katana300 robot arm with
5 degrees of freedom. The instrumentation used to record

2Notice that the objective here is not to characterize the Event-Related
Potential as it is usually performed Neuropsychology, but to provide
evidence that the potential exists and that is consistent for all the participants
of the study.



(b)

Fig. 1. (a) General view of the set up. The subject observes the robotic
arm motion while the EEG system records the brain activity. (b) The robot
arm performs consecutive reaching tasks to five predefined positions, which
are colored in green (correct position), yellow (small incorrect position),
and red (large incorrect position).

the EEG brain activity was a gTec system (an EEG cap,
32 electrodes, and a gUSBamp amplifier). The location of
the electrodes was selected following previous ErrP studies
[15], [3] at FP1, FP2, F7, F8, F3, F4, T7, T8, C3, C4, P7,
P8, P3, P4, O1, 02, AF3, AF4, FC5, FC6, FC1, FC2, CP5,
CP6, CP1, CP2, Fz, FCz, Cz, CPz, Pz and Oz (according to
the international 10/20 system). The ground electrode was
positioned on the forehead (position FPz) and the reference
electrode was placed on the right earlobe. The EEG was
amplified, digitized with a sampling frequency of 256 Hz,
and power-line notch-filtered and bandpass-filtered between
0.5 and 10 Hz. As usually done in this type of recordings,
a Common Average Reference (CAR) Filter was applied
to remove any offset component detected on the signal.
The signal recording and processing and the synchronization
between the robot arm and the EEG were developed under
BCI2000 platform [16].

The general setting of the experiment was a user observing
the operation of a robot arm while the EEG was recorded
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(Figure la). The robot continuously operated by developing
reaching tasks to five predefined positions (Figure 1b). The
participants were instructed to judge the robot motion as
follows: (a) a motion towards the center was a correct
operation, (b) a motion towards the locations placed just
on the side (left or right) of the center was small operation
error, and (c¢) a motion towards the furthest locations from
the center (left or right) was a large operation error. The
reaching positions were marked with colors to facilitate
the participants the identification of the operations, where
green was the correct movement, yellow the small operation
errors, and red the large operation errors. Notice that this
experimental design includes different functional operations
(error-correct), different degrees of error (small-large), and
different laterality of error (left-right).

Three male, right-handed, 24-aged persons selected from
the research team participated in the experiments. The par-
ticipants were informed about the experiment. Furthermore,
they were instructed to avoid as much as possible any
muscular movement (artifacts) to avoid the contamination
of the EEG. One subtle but important artifact to avoid,
as mentioned in previous works [3], was the lateral eye
movement. This is because this artifact is very prominent
in the EEG of frontal and fronto-central areas, and could
lead to erroneous conclusions about the laterality of the
EEG potentials. The protocol was adapted to minimize the
motion of the eyes by placing the robot arm far enough
from the subject (4 meters), so that the participants did not
need to significantly move their eyes to observe the final
position of the robot. Notice that, although there is literature
related to the automatic filtering of these artifacts [17], at this
stage of the research is always better to avoid its occurrence
(rather than to rely in filtering techniques that could eliminate
important aspects of the brain potential).

COUNTOOWN START COUNTDOWN START

COUNTDOWN END COUNTDOWN END
SEQUEN(IIE START 10 MOVEMENTS SEQUENCE START

1t Iy 1t

—

6 sec 1.5'sec 4sec 6sec
O MOVEMENT START
. MOVEMENT TO REST POSITION|

Fig. 2. Temporal diagram of a sequence of robot actions.

For each participant, an experiment consisted of 10 trials
of 5 sequences each, where each sequence was composed
by 10 random reaching actions carried out by the robot
arm. A total number of 500 operations were executed. Each
sequence was designed as follows (Figure 2): firstly there
was a 6 seconds countdown with auditory signals associated
(to inform the subject that the sequence was starting) and
then ten random actions were executed by the robot. The
reaching action lasted 1.5 seconds (the effective motion
was between 0.8 and 1.1 seconds). The returning to the
initial position was 4 seconds (the effective motion was
between 0.8 and 1.1 seconds) providing the participants
some time to relax between robot motions. The total time
of the experiment was 51 minutes plus approximately 5



minutes of breaks distributed between trials (depending on
the user). The experiment was designed in such a way that
the 500 operations were equally distributed as 100 times per
possible action. Then, 100 brain responses of each action
were recorded, which is the typical amount of samples used
in ERP literature to have a good signal to noise ratio using
grand averages techniques to study the responses [17].

IV. NEURO-PHYSIOLOGYICAL ANALYSIS

After recording the EEG data, the first step is to character-
ize the brain response as a possible ERP. The analysis was
developed as follows. Firstly, the averaged ERP potentials
were constructed, which are simply the averaged sum of the
individual responses for each condition at each electrode (to
improve the signal-to-noise ratio and, as a consequence, filter
background noise and occasional artifacts). The averaged
ERP were computed for the three participants for three
different cases: (¢) error versus correct responses, (ii) left
versus right errors and (4i7) small versus large errors. Next,
a statistical analysis (ANalysis Of Variance, ANOVA test)
was performed for all the ERPs of the three cases, with a
significance level of 95% (p < 0.05). Finally, in order to
speculate about the brain areas involved in the generation
of the potentials, an EEG Source Localization technique
was used. Concretely, we used sLORETA [18]. This type
of techniques estimates the neural generators within the
brain given the EEG at the surface of the scalp. Figure 3
shows the results of the averaged ERPs and the statistical
analysis in the Cz electrode (usually selected to display error-
related potentials), and the result of the source localization
technique.

The first observation is that the averaged ERPs result-
ing from the robot operation correct/incorrect are different,
which implies that in mean, there are different brain pro-
cesses involved. Secondly, the difference of the ERP average
correct and incorrect reflects a large negativity around 400
milliseconds with great statistical difference. This result
agrees with the previous works that describe a negativity
around this timing in error observation tasks [4]. Thirdly,
the shape of the response in Cz elicited in the incorrect
operations is similar to the response of other protocols
that involve the human monitoring of errors, concretely the
interaction errors (see [4] for some examples): they have a
sharp positive potential at around 0.3 seconds, followed by a
wide prominent negativity around 0.4 second. Fourthly, the
main active areas at the time of the prominent negativity of
the difference signal (error minus correct response average)
were Brodmann 6, 24 and 31 (Figure 3). These areas are in
the close neighborhood of the ACC, which is the brain area
involved in the error processing. Furthermore, this finding
agrees with several results that obtained the same areas in
the most prominent negativity in reaction, observation and
interaction errors [5], [6], [4]. Their hypothesis is that these
associative areas (somatosensory association cortex) could
be related to the fact that the subject becomes aware of the
error. All these results push forward the hypothesis that a
discriminative (correct/incorrect) Event-Related Potential is
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Fig. 4. General classification scheme. The measured EEG signal undergoes
a set of different filters before feeding the classifier. Four different types
of features were used to train the classifier: raw signal, derivative of the
signal, cummulative energy or the M components obtained from ICA. Two
different classifiers were compared, one based on Boosting and the other
one using Support Vector Machines.
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elicited during the human monitoring of the robot operation,
which belongs to the family of error-related potentials.

Finally, another interesting result is the ANOVA test
between small and large errors. As opposed to the other
ANOVA comparisons, where the statistical difference was
mostly focused on the 300ms-800ms, this ANOVA showed
that the statistical difference was mainly in the 800-900ms
time range. This could be due to the fact that the movement is
not instantaneous. Thus, the user starts understanding the fact
that an error occurred almost at the start of the movement
because of the initial turn of the robot to reach the error
positions. However, the differences in small and large errors
were only present almost at the end of the movement, which
occured between 800-900ms.

V. CLASSIFICATION OF EEG ACTIVITY

The previous section shows that there exists a discrimina-
tive (correct/incorrect) response in the human brain elicited
during the observation of the robot operation. The next
objective is to develop a single trial classification of these
processes to use it as feedback, for instance, for robot
learning or robot supervision. The main difficulty here is
that, despite on average the different conditions of the
ERPs look very different, single EEG measurements are
very noisy and this classification becomes challenging. This
section describes the techniques used to obtain an automatic
classification.

Let x, € RY denote the EEG signal at time ¢ where N
is the number of EEG channels recorded. For a given robot
motion, the EEG signal is a sequence of measurements x1.7
over a fixed window. During the analysis of the signal, the
ANOVA test was used to evaluate the statistical difference
among the different conditions. The results of this analysis
were used to reduce the temporal window [1..T] for clas-
sification to those intervals where the ANOVA test found
significant differences.

The classification process is composed of two different
phases as illustrated in Figure 4. The first one is the com-
putation of the features that will be used by the classifier.
Recall from previous section that, during acquisition, the
EEG signal has already been processed to remove the offset
(CAR-filter) and to keep those frequencies relevant to the
ERP (0.5-10Hz). Previous studies have shown that, for ERPs,
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Average waveforms (top), ANOVA analysis (middle) and Source Localization at 400ms (bottom) averaged over all the participants in channel

Cz. The average waveforms clearly indicate that an ERP was elicited. A baseline of 200 ms before the movement started is also shown. The robot motion
occured between the 0-1500 ms. For the ANOVA figure, the vertical axis correspond to the p-values at each instant of time for the same time window as
before. The horizontal red line shows the p-value of 0.05. The source localization shows the activity of the brain. The figure is better understood in color

where yellow areas indicates those areas with high activity.

the frequency domain does not contain enough information
to perform the classification [19]. Therefore, we focus on
the analysis of temporal features that have been used in the
literature as well as some designed from our own analysis
of the signal. In all cases, the features are computed from
a 64Hz subsampled version of the signal to reduce the
computational cost (we have experimentally verified that this
subsampling does not affect the classification accuracy). The
following characteristics were computed:

e RAW signal: In this case, the feature vector is the con-
catenation of all the x; with ¢ within the window defined
by the ANOVA analysis of the signal.

e First derivative: The ERPs are usually described by their
number of components and their value (positive or nega-
tive). The derivative is a natural way to obtain a description
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of the (positive and negative) modes of the signal. The

discrete derivative vector is computed as %, = 7
over the same window as the RAW signal. The classifier
receives as feature vector the concatenation of all the
derivatives.

e Cumulative energy of the signal: In the grand averages,
a characteristic of the error ERPs is that the error signal
has more energy than the correct responses. We explore
this idea by approximating the cumulative energy of the
signal over the temporal window of channel ¢, where e;; =
Z;:l lz;j?, Vt € [0..T). The vector e; = (e14...ent)”
contains the cumulative energy of each channel at time t.
As in the previous cases, the window is set according to
the ANOVA results and the concatenation of all e; is used
as the feature vector for the classifier.



e The Independent Components: Independent Component
Analysis [20] (ICA) is a spatial-filtering technique whose
aim is to retrieve unobserved signals (the so-called Com-
ponents) from observed mixtures (in our case, N chan-
nels), using the mutual independence among signals as
a fundamental initial assumption. The use of ICA is
motivated by the fact that the different conditions may
trigger different types of brain activity that can be tracked
independently. We used the Maximum Likelihood method
[20], to compute M Independent Components from the
EEG measurements without any subsampling. The method
also carried out a dimensionality reduction with Principal
Component Analysis (PCA). The resulting demixing matrix
transforms the original signal x; to a y;, € RM. Finally,
we performed an ANOVA test on each component so
as to verify the existence of components with statistical
difference among the different conditions. In addition to
this, the ANOVA test also allowed us to fix the temporal
window as we have done with the other types of features.

The previous features were used to train and compare the
performance of two different state-of-the-art classifiers used
in the ERPs literature:

e AdaBoost: A meta-classifier that combines several weak
classifiers and iteratively assings weights to them [21]. As
weak classifier, we chose the Functional Decision Tree [22]
due to the multi-variate nature of the EEG data. Functional
trees allow to use linear combinations of attributes. This
combination of boosting and functional decision trees was
successfully used in the past for classifying ERPs [3].

e Support Vector Machines: The main idea of this family
of classifiers is to search for the maximum hyperplane
separation of classes in a self-constructed kernel space,
obtained applying a non-linear function (usually called
kernel) to the initial feature space [23]. As the previous
classifier, this one was succesfully used in the past for
classifying ERPs [13]. Among all the possible versions of
SVM, we used the v-SVM classifier with a radial basis
function kernel.

VI. CLASSIFICATION RESULTS

This section presents the classification results obtained
with the dataset acquired according to the protocol described
in Section III, and a comparison of the four different types
of features and the two classifiers described in Section V.
For a fair comparison, we tried to tune the parameters of
each classifier and feature. However, the best performance
was obtained in all cases with very similar parameters. The
configuration for each classifier was:

o AdaBoost: we used the Weka implementation [24]. The
number of iterations for the Functional Tree classifier
and the boosting was 10 and 3, respectively.

e SVM: we used the libSVM implementation [25]. The
v parameter was set to 0.5 and the + parameter of the

radial basis function was set to—L—.
ffeatures

The EEG time window (common for all the participants)
was [0.3...0.9] seconds for the RAW, derivative and energy

59

features, resulting in a total of 1248, 1216 and 1248 features
per robot operation, respectively. For the ICA features, the
best results were obtained with 3 independent components. In
this case, the time window provided by the ANOVA analysis
of the components varied from one participant to another,
being the final number of features between 50 and 70. In
order to minimize the overfitting effect, we used a ten-fold
cross-validation strategy to train the classifier. Artifacts were
not removed prior to the classification so as to have more
realistic data.

There were two classification tasks: error versus correct
responses, and a five-class task (left-large error, left-small
error, correct, right-small error, right-large error). For the first
task the data is strongly unbalanced (we have four times
more errors than correct responses). Thus, we duplicated the
correct responses to balance the dataset, having a total of
400 errors versus 400 correct responses. For the five-class
case, the dataset was balanced and contains 100 examples
per case.

We discuss first the results for the two-class case (error
versus correct responses). Table I shows the average for
all the participants of the recognition performance for each
class, feature and classifier. The results illustrate that both
classifiers achieved good classification rates (always > 75%),
where the AdaBoost always had better performances (always
> 80%). The best features were raw data for both the
AdaBoost classifier and for the SVM (both > 90%). In the
latter case, the derivative features were better for the correct
class and worse for the error one. The results show that ICA
was unable to separate very discriminative components. On
the other hand, the results using only 3 components point out
that that the actual dimensionality of the data can be reduced
through PCA without compromising much of the efficiency.

TABLE II
SUBJECT AVERAGE CLASSIFIER-FEATURES ACCURACIES COMPARISON:
5 CLASSES
| RAW | Derivative | Energy | ICA
AdaBoost | 46.27% 38.73% 26.00% | 33.53%
SVM 51.07% 42.20% 26.33% | 29.73%

The average classification results for all the participants in
the five-class case are shown in Table II (average of correct
detection over all the classes for each pair of feature and
classifier). The best combination is the SVM with raw data
followed by AdaBoost with raw data too. As in the previous
case, the other features provided systematically worse results.
The best classification rate is on average 51.07%.

The performance of the classifier for the five-class case,
despite being better than chance, degrades significantly with
respect to the two-class one. However, let us discuss the
confusion matrix for each participant (see Tables III, IV, and
V for the SVM classifier’). We have labeled the different
classes described in Section IIT as follows: left-2 (large left
error), left-1 (small left error), correct, right-1 (small right

3The conclusion is also valid for the AdaBoost classifier.



TABLE I
SUBJECT AVERAGE OF CLASSIFIER-FEATURES ACCURACIES: ERROR VS CORRECT

RAW Derivative Energy ICA
Error Correct Error Correct Error Correct Error Correct

AdaBoost | 91.42%  100.00% | 90.58%  100.00% | 80.00% 98.00% | 85.58%  100.00%

SVM 89.25% 95.08% 87.25% 96.33% 76.50%  88.58% | 76.50% 84.17%
error) and right-2 (large right error). The matrices show that -+-Error = comrect]
misclassifications tend to group by blocks, that is, right errors 'zzﬂz N
tend to be confused among them and left errors among them. 8000 E— "
This fact reinforces the idea that the error signal may have 7000 s
some laterality component as pointed out in previous works. ::iz =
The same effect appears between large and small errors. 1000
Although in this case the differences are smaller and vary 3000
a bit more among participants, one can verify that small 2000

. . . 10,00
errors tend to be misclassified more with small errors of 00 -
different side than with large ones. For example, right-2 is kT A S D SeiT St T g s

misclassified more often as left-2 than as left-1 for every
participant.

TABLE IIT
PARTICIPANT 1: SVM CLASSIFIER ACCURACY WITH FIVE CLASSES
| Left-2 Left-1 Correct Right-1  Right-2
Left-2 42% 21% 7% 12% 18%
Left-1 22% 47% 7% 13% 11%
Correct 5% 1% 86% 4% 4%
Right-1 10% 12% 10% 46% 22%
Right-2 13% 11% 5% 26% 45%
TABLE IV
PARTICIPANT 2: SVM CLASSIFIER ACCURACY WITH FIVE CLASSES
| Left-2  Left-1 Correct Right-1  Right-2
Left-2 37% 21% 8% 14% 20%
Left-1 19% 47% 6% 19% 9%
Correct 6% 6% 77% 5% 6%
Right-1 10% 20% 12% 41% 17%
Right-2 16% 13% 12% 19% 40%
TABLE V
PARTICIPANT 3: SVM CLASSIFIER ACCURACY WITH FIVE CLASSES
| Left-2  Left-1 Correct Right-1  Right-2
Left-2 45% 19% 4% 14% 18%
Left-1 20% 42% 5% 22% 11%
Correct 3% 2% 85% 5% 5%
Right-1 15% 18% 4% 45% 18%
Right-2 18% 8% 7% 26% 41%

Finally, we have studied the number of trials needed for
good classification performance. This is important for real
applications, since the EEG data acquisition is a consuming
and tiring process. The analysis was performed selecting sets
as follows: using the first (in time) 10% of the data as train
set and the 90% of the last (in time) data as the test set
was labeled as 10%-90%. We performed this comparison
for the two classification tasks, for the cases 10%-90%, 20%-
80%, 30%-70%, 40%-60%, 50%-50%, 60%-40%, 70%-30%,
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Fig. 5. Detection rates with different percentages of data of train and test
sets. (a) two-class and (b) five-class tasks.

80%-20% and 90%-10%. Figure 5 shows the recognition
rate for each class averaged over the three participants using
the SVM classifier. The results show that for the two-class
problem, the recognition rate reached a stable value with
60 examples (around 35 minutes of data collection). On the
five-class task, the behavior is different and it seems that
100 examples is not enough and that we could improve the
results using more data.

Summarizing, we have shown that it is possible to dis-
tinguish between error and correct robot operations with a
high accuracy (over 90%). For the five-class problem, the
performance is not as good, but the confusion matrix has a
structure that can be used to obtain laterality and magnitude
information. Among all the features, raw data provided con-
sistently the best results. The differences between AdaBoost
and SVM were not large and depended on the particular
task. In the case of the data set, for error detection a data
collection of 30 minutes with 60 examples is required to
have a classification rate > 90%.

VII. APPLICATION TO Q-LEARNING

Finally, we have implemented a simple Q-learning algo-
rithm [1] similar to the one presented in [3] to provide a
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proof of concept of the whole system. For this study, we
used the learned SVM classifier for the two class problem
(error/correct) to classify online the brain activity during Q-
learning. We used the same time window as in the previous
section, 0.3-0.9 seconds, and RAW features. The rewards
were computed from the classification results as follows: a
response classified as error was a -1 reward, and a response
classified as correct was a +1 reward. The system started with
null Q-function values. Actions were selected according to
the e-greedy policy with decreasing € and learning rate. The
Q-learning algorithm was run up to 100 robot actions.

For the problem at hand, we simply have five different
values for each of the possible actions. The Q-values for
each participant are shown on Figure 6. The results show
how the best action was always the movement towards the
center, whereas the other actions gradually decrease in utility.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have demonstrated the existence of a
brain response during the observation of a real robot action.
The results show that the brain areas involved in this brain
activity are those related with prior work on human error
processing. The nature of this response, together with the
ability to classify single-trial EEG measurements, opens the
door to develop robot learning algorithms that use brain
activity directly as reward signals.

Our future work focuses on better classification algorithms
for the laterality and magnitude of the error. This information
may play an important role to implement RL algorithms in
more complex settings such as continuous domains and more
degrees of freedom. Furthermore, we also plan to explore the
detection of errors on a continuous EEG signal to incorporate
this on more complex robot actions.
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Abstract— This paper describes a novel hand gesture recog-
nition system intended to support natural interaction with
autonomously navigating robots that guide visitors in museums
and exhibition centers. The proposed system utilizes upper body
part tracking and two neural network-based classifiers, one for
each arm. Tracking is performed in a 9-DoF configuration space
and it is facilitated by means of a probabilistic approach which
combines particle filters with hidden Markov models in order
to enable the simultaneous tracking of several hypotheses for
the body orientation and the configuration of each of the two
arms.

Given the arm trajectories in the configuration space, clas-
sification is facilitated separately for each arm by means of
a combined MLP/RBF neural network structure. The MLP is
trained as a standard classifier while the RBF neural network
is trained as a predictor for the future state of the system. By
feeding the output of the RBF back to the MLP classifier, we
achieve temporal consistency and robustness to the classification
results.

I. INTRODUCTION

Gesture recognition is an important, yet difficult task.
It is important because it is a versatile and intuitive way
to develop new, more natural and more human-centered
forms of human-machine interaction. Moreover, it is difficult
because it involves the solution of many challenging sub-
tasks such as robust identification of hands and other body
parts, motion modeling, tracking, pattern recognition and
classification.

Early psycholinguistic studies [1], [2], initially targeting
sign language gestures, revealed that gestures can be charac-
terized based on four different aspects: shape, motion, posi-
tion and orientation. All gesture recognition approaches try to
approach the problem by concentrating one way or another
on one or more of the above four aspects. Posture-based
approaches, for example, utilize static images, concentrating
only on the shape of the hand to extract features such as
hand contours, fingertips and finger directions [3], [4], [5],
[6]. Temporal approaches, on the other hand, not only make
use of spacial features but also exploit temporal information
such as the path followed by the hand, its speed, etc [7], [8],
[9], [10].

A category of approaches utilize 3D hand models for the
detection of hands in images. One of the advantages of these
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methods is that they can achieve view-independent detection.
The employed 3D models should have enough degrees of
freedom to adapt to the dimensions of the hand(s) present in
an image. Different models require different image features
to construct feature-model correspondences. Point and line
features are employed in kinematic hand models to recover
angles formed at the joints of the hand [11], [12]. In [13],
a 3D model of the arm with 7 parameters is utilized. In
[14], a 3D model with 22 degrees of freedom for the whole
body with 4 degrees of freedom for each arm is proposed.
In [15], the user’s hand is modeled much more simply, as
an articulated rigid object with three joints comprised by the
first index finger and thumb.

In this paper we present a specific approach for vision-
based hand gesture recognition, intended to support natural
interaction with autonomously navigating robots that guide
visitors in public places such as museums and exhibition
centers. The operational requirements of such an application
challenge existing approaches in that the visual perception
system should operate efficiently under totally unconstrained
conditions regarding occlusions, variable illumination, mov-
ing cameras, and varying background. Recognizing that the
extraction of features related to hand shape may be very
difficult task, we propose a gesture recognition system that
emphasizes on the temporal aspects of the task. More specif-
ically, the proposed approach takes into account information
conveyed in the trajectory followed by user’s arms while the
user performs gestures in front of a robot.

The proposed gesture recognition system builds on our
previous work in model-based visual tracking of human
arms and body [16]. According to this tracking approach,
a nine parameter model is employed to track both arms (4
parameters for each arm) as well as the orientation of the
human torso (one additional parameter). In order to reduce
the complexity of the problem and to achieve real-time
performance, the model space is split into three different
partitions and tracking is performed separately in each of
them. More specifically, a Hidden Markov Model (HMM)
is used to track the orientation of the human torso in the
ID space of all possible orientations and two different sets
of particles are used to track the four Degrees of Freedom



(DoF) associated with each of the two hands, using a particle
filter-based approach.

Given the arm trajectories in the configuration space,
classification is facilitated separately for each arm by means
of a combined Multi Layer Perceptron/Radial Basis Function
(MLP/RBF) Neural Network structure. The MLP is trained
as a standard classifier while the RBF neural network is
trained as a predictor for the future state of the system. By
feeding the output of the RBF back to the MLP classifier,
we achieve temporal consistency and robustness in the clas-
sification results.

Sample experimental results presented in this paper, con-
firm the effectiveness and the efficiency of the proposed
approach, meeting the robustness and performance require-
ments of this particular case of human-robot interaction.

II. APPROACH OVERVIEW

A block diagram of the proposed gesture recognition
system is illustrated in Figure 1.

Input image

Segmentation of hands/face

Assign skin color
probabilities to pixels

Compute skin
colored blobs

Background
subtraction

Y

Tracking in the 9-DoF model space

Particle filters for HMM for Particle filters for
left arm body orientation right arm
Y Y
Buffer Buffer
_ L ) 5 L J
g - A
0 w
© MLP o MLP
i = L ]
O
o \ R \
i= r 1 =
= RBF = RBF
o L J 2
= I & I
l Left hand Right hand
gesture gesture
Fig. 1. Block diagram of the proposed approach for hand tracking and

gesture recognition. Processing is organized into three layers.

The first step of the approach is to extract hand and face
regions as skin-colored foreground blobs.

Assuming a 4 DoF kinematic model for each arm and one
additional degree of freedom for the orientation ¢ of the user
around the vertical axis (see Fig. 2), the pose of the user is
tracked in a 9 DoF model space. The resulting 9-parameter
tracking problem is tackled in realtime by fragmenting the
9-dimensional space into three sub-spaces; a 1D parameter
space for body orientation angle and two 4D spaces, one for
each hand. The body orientation angle ¢ is appropriately
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Fig. 2. The 9-parameter model used for the rotation of the body and the
pose of the user’s arms

quantized and tracked over time by means of an HMM.
For every possible solution, a separate particle filter set is
employed for each arm. The result of each particle filter
is used to estimate the observation probability, which is
subsequently employed to update the HMM.

Classification is achieved by buffering the trajectory of
each arm (in its 4D configuration space) and feeding it
to a feed-forward MLP Neural Network which is trained
to recognize between five system states: idle (no gesture),
preparation (hand moving towards a gesture), pointing ges-
ture, hello (waiving) gesture, and retraction (hand retracting
from a gesture). The output of the MLP is passed though
an RBF which is trained as a predictor for the next state of
the system and fed back to the MLP in order to improve
temporal consistency and robustness of the achieved results.

More details regarding each of the above described mod-
ules are provided in the following sections.

III. DETECTION OF HAND AND FACE BLOBS

The first step of the proposed approach is to detect skin-
colored regions in the input images. For this purpose, a tech-
nique similar to [17], [18] is employed. Initially, background
subtraction [19] is used to extract the foreground areas of
the image. Then, for each pixel, P(s | ¢) is computed, which
is the probability that this pixel belongs to a skin-colored
foreground region s, given its color c.

This can be computed according to the Bayes rule as:

ey

where P(s) and P(c) are the prior probabilities of fore-
ground skin pixels and foreground pixels having color c,
respectively. Color ¢ is assumed to be a 2D variable encoding
the U and V components of the YUV color space. P(c | s)
is the prior probability of observing color ¢ in skin colored
foreground regions. All three components in the right side
of Eq.1 can be computed via offline training.
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Fig. 3. Blob detection. (a) Initial image, (b) Foreground pixels, (c) skin-
colored pixels, (d) resulting skin-colored blobs.

(d)

After probabilities have been assigned to each image
pixel, hysteresis thresholding is usand connected components
labeling are used to extract solid skin color blobs. Pixel
probabilities are initially thresholded by a “strong” threshold
Tax to select all pixels with P(s | ¢) > Ty This yields
high-confidence skin-colored pixels that constitute the seeds
of potential blobs. A second thresholding step, this time
with a “weak” threshold T}, is performed. During this step,
pixels with probability P(s | ¢) > Tnin where Tpin < Tpay, that
are immediate neighbors of already classified skin-colored
pixels, are recursively added to each blob.

A connected components labeling algorithm is then used
to assign different labels to pixels that belong to different
blobs. Size filtering on the derived connected components
is also performed to eliminate small, isolated blobs that are
attributed to noise.

A set of simple heuristics based on location and size is
used to characterize blobs as hand blobs and face blobs.

Results of the intermediate steps of this process are illus-
trated in Fig. 3. Figure 3(a) shows a single frame extracted
out of a video sequence that shows a man performing
various hand gestures in an office-like environment. Fig. 3(b)
shows the result of the background subtraction algorithm
and Fig. 3(c) shows skin-colored pixels after hysteresis
thresholding. Finally, the resulting blobs (i.e. the result of
the labeling algorithm) are shown in Fig. 3(d).

IV. TRACKING IN THE MODEL SPACE
A. Kinematic model

As already mentioned, for modeling the human body and
arms, a nine-DOF model, has been employed. This model,
which is similar to the one proposed in [20] is depicted in
Figure 2. According to this model, the human body, with the
exception of the arms, is assumed to be a rigid object with
only one degree of freedom corresponding to its orientation
¢. Both arms are assumed to be attached to this rigid body
at fixed locations (i.e. the shoulders) and they are modeled
by a 4-DoF kinematic model each. The kinematics of each
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TABLE I
DENAVIT-HARTENBERG PARAMETERS FOR THE 4-DOF MODEL OF THE
HUMAN ARM EMPLOYED IN OUR APPROACH.

i | i a1 d 0;
1| +m/2 0 0 6,—n/2
2 —x/2 0 0 &+x/2
3| +m/2 0 L 63+m/2
4 | —m/2 0 0 6s4—m/2
5 0 L 0 0

arm are defined as Denavit-Hartenberg parameters, shown in
table I. 6,6, and 03, are the angles corresponding to the
three DoFs of the human shoulder and 64 corresponds to the
angle of the elbow. L; and L, are the lengths of the upper
arm and the forearm, respectively. They are assumed fixed
in our implementation.

B. Model space partitioning and tracking

To track in the 9-DoF model space presented in the
previous section, the approach presented in [16] has been
assumed. According to this approach, in order to reduce the
complexity of the problem and meet the increased computa-
tional requirements of the task at hand, the model space is
split into three different partitions and tracking is performed
separately in each of them. More specifically, a Hidden
Markov Model (HMM) is used to track the orientation ¢ of
the human body in the 1D space of all possible orientations
and two different sets of particles are used to track the four
DoFs associated with each of the two arms using a particle
filtering approach.

To facilitate the implementation of the HMM, the body ori-
entation angle ¢ is appropriately quantized (50 quantization
levels were used in our implementation). For every possible
solution, a separate particle filter set is employed for each
arm. The result of each particle filter is used to estimate
the observation probability, which is subsequently employed
to update the HMM. This means that the weights of the
particles are used to calculate the observation likelihood for
a particular body orientation state.

To facilitate the implementation of likelihood function
which is necessary in order to evaluate hypotheses in the
particle filter-based trackers, the kinematic model defined in
the previous section is used, along with the camera perspec-
tive transformations. More specifically, forward kinematic
equations are used to transform the rotation of the human
body and the angles of the arm joints to 3D coordinates for
each joint (shoulder, elbow and hand). Accordingly, camera
projection transformations are used to project the resulting
3D coordinates of the joints on the image frame. The
projected joint locations are evaluated by comparing them
with actual observations according to two different criteria:
(a) Projected hand locations should be close to observed skin-
colored blobs, and (b) projected elbows and shoulders should
be within foreground segments of the image.

Figures 4(a) and 4(b) demonstrate the operation of the
particle filter trackers that correspond to a specific value
of the orientation angle (“0” in both cases). On the right



Fig. 4.
orientation angle, (c) A HMM histogram corresponding to a specific frame.

Operation of the tracker; (a,b) Particle filter sets for a specific

parts of the two images are the samples projected on the
3D space (using forward kinematics, as described above).
The corresponding sample projections on the image plane are
depicted on the left. Figure 4(c) depicts a sample orientation
histogram as tracked by the HMM. The values of each
histogram cell correspond to the probability of this specific
orientation being the correct orientation.

V. GESTURE CLASSIFICATION

As observed in [21], gestures are dynamic processes that
typically consist of three phases: preparation, stroke and
retraction. The preparation and retraction phases consist of
arm movement from and towards the resting position, before
and after the gesture, respectively. These phases have been
found to be similar in content between many common ges-
tures and therefore contribute little to the gesture recognition
process. The stroke phase is the one that contains most of
the information that characterizes a gesture.

Based on the above observations our system has been
designed to recognize five different gesturing states:

Idle. No gesture is performed,

Preparation phase.

Pointing gesture,

Hello gesture. The user is waiving using his hand.
Retraction phase.

The mentioned states correspond to two different strokes
(pointing and hello gestures), the accompanying phases
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(preparation and retraction) and the idle phase. The tran-
sitions between the above-mentioned states are illustrated in
Figure 5.

Retraction

Gesture state transitions.

Fig. 5.

Classification is achieved by buffering the trajectory of
each arm (in its 4D configuration space) and feeding it to
a feed-forward MLP Neural Network which is trained to
recognize between the five system states. The output of the
MLP is passed though an RBF neural network which is
trained as a predictor for the next state of the system and fed
back to the MLP in order to improve temporal consistency
and robustness of the achieved results.

This classification structure is graphically illustrated in the
lower part of Figure 1. As implied in Figure 1, the same
structure is employed separately for gesture recognition in
each arm.

A. The MLP

The MLP neural network is mainly responsible for ges-
ture recognition and classification, according to the trained
patterns. It consists of the input layer, the output layer and
two hidden layers. The output layer consists of 4 neurons
encoding the five possible states of the system. The input
layer consists of 44 neurons; 40 neurons are used to provide
input about the trajectory of the arm (4 parameters per frame,
10 frames history) and the rest 4 neurons are used to provide
the prediction for the next state of the system, which is fed
back by the RBF neural network.

B. The RBF

The input layer of the RBF network consists of four
neurons which are connected to the output of the MLP. The
output of the RBF Network also consists of four neurons and
it is fed back to the MLP. Given the output of the MLP, the
RBF is trained to provide a prediction for the next state of
the system.

The intuition behind this is simple: one can think of a
gesture as a state transition process with acceptable and
unacceptable state transitions (Figure 5). However, due to
possible discontinuities in the MLP input data (caused by
erroneous tracking or lost frames in the video), the output
(of the MLP) can itself present discontinuities, translated



to unacceptable state transitions, as well. The RBF network
restricts unacceptable transitions and smooths out outliers at
the output of the MLP.

C. Network training

For training the proposed classifier, a dataset consisting of
12 sequences was used. This dataset contains six examples
of each of the two cosidered gestures. In each of these
sequences all three phases of a gesture appear, together with
cases where none of the phases is performed or when both
hands are acting simultaneously. The dataset was divided into
two subsets, of 6 sequences each. The first subset contained
3 sequences from each of two gestures and it was used to
train the MLP neural network while the second subset was
used to train the RBF network. Using the two subsets, the
training of the system was done in two steps.

Training of the MLP was performed by minimizing the
mean of the squared error using the Levenberg-Marquardt
algorithm. To train the RBF network, the sequences used for
training the MLP cannot be used because they are known to
the classifier. Thus, the second training set is used.

VI. RESULTS

During our experiments, 3 sequences for each gesture,
different from the ones used during the training step, have
been tested. The examined scenarios contained both gestures
performed by one arm only and by both hands simultane-
ously. Our main target was to study whether sequences of
arm kinematic configurations contain enough information to
describe a gesture, given the fact that no other information
about the location of the arm has been used.

The proposed approach performed very well in all test
cases. Four illustrative examples are depicted in Figure 6. In
Figures 6(a) and 6(b) the user performs a right hand gesture
that is correctly classified by the employed Neural Network
structure. Figures 6(c) and 6(d) present two additional exam-
ples where the user gestures with both hands simultaneously.

Table II presents quantitative results obtained with the em-
ployed datasets. The TP figures shown in table II correspond
to the percentage of correctly classified frames (True Positive
classifications). Similarly, FP and FN figures correspond to
percentages of false positive and false negative classified
frames.

As can easily be observed, the successful recognition ratio
does not drop below 86% while the false negative percentage
remains in low levels as well. Further experiments have
been conducted by eliminating the RBF neural network from
the classification structure. In these cases the percentage of
false positive decisions for the preparation and retraction
phase was higher than 15%. Evidently, the utilization of the
RBF network has greatly contributed to the robustness of
the classifier by filtering out temporal inconsistencies in the
output of the MLP.

VII. CONCLUSION

In this paper, we have presented a novel temporal gesture
recognition system intended for natural interaction with
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Bitcode: 0001
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Pointing gesture

Bitcode: 0100
Hallo gesture

0100

Bitcode: 1000
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Fig. 6. Recognition and classification of gestures performed by one or both
hands simultaneously. The left image depicts a 2D view from one camera
of the stereo pair, while the right image shows the 3D representation (of
the left image). The output of the classifier has been superimposed on the
images for the sake of clarity. (a)The right arm prepares to perform a gesture.
(b)The right hand performs a “pointing” gesture. (c)Both hands perform a
“hello” gesture. (d)Both hands retract from the stroke phase.

TABLE II
GESTURE CLASSIFIER QUANTITATIVE RESULTS. TP:TRUE POSITIVES,
FP: FALSE POSITIVES, FN: FALSE NEGATIVES.

Preparation Pointing
TP FP FN [ TP | FP | FN |
88.46% | 11.54% | 6.47% [ 86.48% [ 13.52% [ 2.08% |
Hello Retraction
[ TP [ FP [ FN | || TP | FP [ FN |
[ 9691% [ 3.09% | 1.41% | | [ 86.04% [ 13.96% | 6.21% |




autonomous robots that guide visitors in museums and ex-
hibition centers. The proposed gesture recognition system
builds on our previous work on vision based tracking and
more specifically on a probabilistic tracker capable to track
both hands and the orientation of the human body on a nine-
parameter configuration space.

Dependable tracking, combined a novel, two-stage neural
network structure for classification, facilitates the definition
of a small and simple hand gesture vocabulary that is both
robustly interpretable and intuitive to humans. Experimental
results presented in this paper, confirm the effectiveness and
the efficiency of the proposed approach, meeting the run-time
requirements of the task at hand.

Nevertheless, and despite the vast amount of relevant
research efforts, the problem of efficient and robust vision-
based recognition of natural hand gestures in unprepared
environments still remains open and challenging, and is
expected to remain of central importance in human-robot
interaction in the forthcoming years. In this context we
intend to continue our research efforts towards enhancing the
current system. At first we plan to redesign the classification
structure in order to take into account the multiple hy-
potheses provided by the employed tracker. This is expected
to increase classification accuracy since errors in the early
processing stages (tracking) are not propagated to later stages
(classification). Additionally the training and test datasets
will be expanded to include richer gesture vocabularies and
larger intra-gesture variation. Finally, we intend to include a
more sophisticated algorithm to classify skin colored blobs
to hands and faces. This will allow our system to cope with
more complex cases where multiple users simultaneously
interact with the robot.
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Abstract- This project aims at testing the possible advantages
of introducing a mobile robot as a physical input/output device
in a Brain Computer Interface (BCI) system. In the proposed
system, the actions triggered by the subject’s brain activity
results in the motions of a physical device in the real world,
which we believe are more compelling than just a changement
in a graphical interface on a screen. A goal-based system for
destination detecting and the high engagement level offered by
controlling a mobile robot are hence main features for actually
increase patients' life quality level.

L INTRODUCTION

ABCI system enables control of devices or

communication with other persons through cerebral activity.
Because they don’t depend on neuromuscular control, BCIs
can provide communication and control for people with
devastating neuromuscular disorders, such as amyotrophic
lateral sclerosis, brainstem stroke, cerebral palsy, and spinal
cord injury. BCIs for control applications can be based on
goal selection. which means the BCI simply indicates the
desired outcome, and downstream hardware and software
handle the continuous kinematic control that achieves the
outcome. Goal selection is much less demanding in terms of
the complexity and rate of the control signals the BCI must
provide with respect of direct control of a device.

Our project aims at testing the possible advantages of
introducing a mobile robot as a physical input/output device
in a system of Brain Computer Interface (BCI). In the
proposed system, the actions triggered by the subject’s brain
activity results in the motions of a physical device in the real
world (i.e. the robot), and not only in a modification of a
graphical interface. Moreover, our robot is fitted with a
camera for real-time video feedback and a microphone for
telepresence applications. Joining the low complexity of a
goal-based system for detecting a suitable destination and
the engagement level generated in the patient by a mobile
robot allows the reliable (goal-based) control of a mobile
robot platform. With such a device, patients are allowed to
overcome, at least partially, their physical disorders and to
interact with real world with a certain degree of freedom.

The software modules we developed for interfacing the
brain to the robot is called NEVRAROS. NEVRAROS is a
non-Invasive P300-based BCI system. It presents to patient a
captivating, but simple graphical interface which provides
specific visual stimuli for destinations selection; the patient
answers to such that stimuli with a specific EEG amplitude
alteration. NEVRAROS acquires brain signals, extracts key
features from them, and translates the features into goal-
commands for remote mobile robot. Goal-commands are
then converted in low level commands for navigation. In the
meantime, the camera and the microphone mounted on the
robot send a perceptive stream to patient's display, so he can
"experience" the navigation environment.

NEVRAROS’s architecture is divided into logical
modules: a set of reusable electrodes (located in Oz, Pz, Cz,
Fz, EOG positions), and a EEG amplifier from
Compumedics Neuroscan™ are arranged for raw cerebral
signal acquisition. HIM module from BCI++™ system and a
Matlab™-based classifier extract and classify useful features
from raw signal. AEnima module from BCI++™ ig
responsible both for user display interface, synchronize
triggers for HIM features extraction and convert logical
control signals into semantic control signal for robotic
device. User’s visual stimulation is provided by a suitable
user interface and allows users to express P300 peaks in
their EEG.

Main related works are presented in Chapter II. A concise
excursus of base concepts concerning goal-based selection is
presented in Chapter III. Chapter IV introduces
NEVRAROS system's design, while implementation and
system's architecture is presented in Chapter V. Chapter VI is
for showing system evaluation, both from performances and
usability point of view. Description of result in testing
NEVRAROS over patients will be presented as well.
References can be found in Chapter VII.

II. RELATED WORKS

Advances in neuroscience and computer technology have
made possible a number of recent demonstrations of direct
brain control of devices such as a cursor on a computer
screen and various prosthetic devices, and experiments in
using non-invasive BCI system for controlling a remote
autonomous robotic device already took place. A P300-based
BCI system offering a web GUI for controlling remote
mobile robots was tested by A. Chella, E. Pagello, E.
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Menegatti, K. Prifitis et al. [1]. Noninvasive EEG signals
recorded over sensorimotor areas (corresponding to three
mental states classified using spectral features from the EEG
as input) were used on BCI system to give human users
control of a mobile robot by J. del R. Millan et al. [26]. A
humanoid robot equipped with a video camera that displayed
objects in its environment was partially controlled by a
human operator’s P300 response thanks to a recent work of
C. J. Bell et al. [18]. A noninvasive BCI with a shared
control system that helps users in driving an intelligent
wheelchair by estimating users' steering intentions from
EEG was tested by F. Galan, J. del R. Millan et al. [32]. The
conviction that non-invasive EEG-driven BCls offer a
realistic perspective for communication in paralyzed patients
initially was demonstrated by N. Birbaumer, J. R. Wolpaw et
al. [15] and then confirmed by N. Birbaumer. [12].

Uses of P300 as neurological signal for brain activities
were discovered first by S. Sutton et al. [33], and then used
as signal for cursor control by D.J. McFarland, W.A.
Sarnacki, and J.R. Wolpaw [20]. Recently, P300 signal were
used as base in systems for disabled subjects by Piccione et
al. [7], Y. Wang et al. [16] and Sellers and Donchin [5].

Moreover, the use of P300 as simple and non tiring
paradigm was cover by Hiroyuki Ishita et al. [34]. The
characteristics of not demanding specific training to the user
on P300 and SSVEP based BCIs were underlined by F.
Piccione, F. Beverina, G. Palmas, S. Silvoni [27].

III.

Although concurrent studies on BCI show many
important results in controlling vehicles suitable to carry
human being (like robotic wheelchairs), their complexity is
high, both in terms of implementation and easy of usage by
patients. In most cases, non-Invasive BCI for controlling
prosthetic objects requires the ability to activate specific
patterns of brain signals that can be achieved by healthy
patients only after weeks or even months of training, and
time of learning for disabled patients would be longer or
even infeasible. The idea of developing a robotic platform
to offer a remote telepresence experience, allowing patients
to view and listen what the robot perceives and to send high
level commands to the robot is an application which is
simpler to implement than other solutions and can be more
easily realized in practice, using methods that require
patients little learning effort, and extremely limited training
time.

GOAL-BASED SELECTION

Abstracting movement concepts from a human-like
prospective, and idealizing the hypothetical movements
device in a non specified mobile device, it is easily
demonstrable that user is able to control this device in
navigating into 2D surfaces (i.e. a flat surface in a 3D
environment), using only six high-level commands: four of
them are related to selecting movement direction (right, left,
forward, backward); the other two are used for actually
impress the movement through selected direction (go, stop).
The number of high-level command can be reduced to four
without reducing navigation freedom: the two command for
impress the movements can be absorbed by the four
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commands for direction selection as follow: user select one
of the directional commands for starting movement in that
direction, and then select opposite movement direction
command for stopping movement (i.e. "left" command
device to navigate in left direction if device is in "stop"
status, while stop the device if it is in "right" navigation
status). Such these schemes are simple but complete, only if
high-level commands can be imparted to device in real time
by the user. A solution of this kind is hence not still
acceptable if considering that device's users will be patients
with neurological diseases and elder average age.
Overcoming this problem is possible, if one implement a
certain degree f autonomy in the robot navigation system. So
the user is able to select the robot’s destination without
worrying about tight deadlines in controlling navigation:
once he select the favorite destination, automatic routines
will autonomously select appropriate paths, and the robot
will reach such that destination with no further user’s effort.

V. SYSTEM DESIGN

(b)

Fig. 1. (a) controlling a mobile device with six high-level commands: four
directional arrows for direction decision, and two movements buttons for
starting and stopping movement; (b) controlling a mobile device with four
high-level destination commands: three select new destinations, one for
going back to last destination.

NEVRAROS functional model recalls functional model
for a typical brain-computer interface: patient, or user, is
connected to the system by a set of electrodes properly
attached on the cranial skin outside the skull. Brain activity
is hence detected and transmitted to an opportune amplifier
as electrical signal. Once signal is amplified to opportune
level, the enhanced signal is transmitted to the classifier. The
patient is looking at a graphical user interface in which
blinking arrows represent the choices the patient can pick.
When, the intended choice is blinking the patient’s
recognition process activate in the brain the so called P300
brain wave. In the mean time, to double check the
appropriate timing of the graphical user interface, an
external analogical blink sensor acquire interval time of
stimulation provided by user interface, and transmit to the
classifier (via amplifier, again) a pseudo-periodic square
wave, which indicates when stimulations take place (high
voltage level means visual stimulation is on, low voltage
level represents visual stimulation is off). When the
classifier receives both signals from blink sensor and
electrodes, starts to classifier the P300 waves resident into
brain signal using square wave as selector of the time
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Fig. 2. Proposed functional model for NEVRAROS.

window to analyze. Once classification is finished, results
are transmitted to interface manager which updates user
interface status (providing new stimuli or calling required
module) and sends, if necessary, high level commands to the
navigation module of the mobile robot. During all its
execution lifetime, the mobile device sends back to the
interface manager a video stream that is displayed into user
interface screen.

Fig. 2 shows an high-level diagram of components for
NEVRAROS system. Note that the blink sensor is used only
for debugging purposes. Once we assessed the appropriate
timing between all system hardware and software
components, the same function provided by blink sensor can
be implemented in the software of the graphical user
interface which can send an acknowledgment signal to the
classifier. The motivation for using two different methods to
communicate triggers of classification is for test purpose: the
use of software for sending triggers is more compact and
require less devices, but delays can occur during
transmission, because acknowledgment signal is transferred
through a socket into the network that connect classifier and
interface manager. Such those delays are not deterministic,
and can vary in a little range. The use of external device
allows quantification of delays by simple confronting arrival
time of square waves with arrival times of acknowledgment
sockets. Once the actual delay is quantified, and the
classifier is set up for managing it, blink sensor can be
removed.

V. SYSTEM IMPLEMENTATION

A.Components

Main components necessary for implementing a
NEVRAROS-like BCI system are listed below; note that
some of such these components, even if perfectly
functioning for the scope of this project, can surely be
superseded with other technologies, especially those devices
concerning medical and neurological equipment.

One of the keys to recording good EEG signals is the type
of electrodes used. Electrodes that make the best contact

with a subject's scalp and contain materials that most readily
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conduct EEG signals provide the best EEG recordings:
IRCCS San Camillo Hospital provided a set of shielded
reusable disks made of silver chloride (Ag-AgCl).

Once electrodes are set up, the amplifier gets input signal
directly from an examinee head. Amplitude of brain
potentials measured directly on a scalp is about 100uV. The
bioelectric signals are hence small, in terms of voltage, and
require considerable amplification. IRCCS San Camillo
Hospital provided a Synamps amplifier from Compumedics
Neuroscan, with a SCAN Acquisition software as interface
to the amplifier.

In order to provide a solid structure for the entire system,
a framework from Sensibilab was used: BCI++  (http://
www.sensibilab.campuspoint.polimi.it). BCI++ is dedicated
to the development and fast prototyping of Brain-Computer
Interface systems, pc-driven protocols for a variety of bio-
signal acquisition paradigms and BCI-based applications.

The BCI++ features two main modules communicating
via TCP/IP connnection: HIM, a module dedicated to signal
acquisition, storage and visualization, real-time execution
and management of custom algorithms (developed using C/
C++ or Matlab®) and AEnima, a Graphic User Interface
module dedicated to pc-driven protocols development based
on a high-level 2D/3D Graphic Engine (Irrlicht).

NEVRAROS display interface represents the core of all
the system. It is an AEnima dependent dynamic library
loading which contains algorithms and code for user
stimulation, mobile device control, video feedback from
mobile device control and trigger generator for HIM. It is
written in C++ language, for complete integration with
AEnima framework. It offers to patient three different use
modes: learning (simulated environment) where user
replicates interface's choices filling database with his own
data set; testing (simulated environment) where data set
goodness is tested asking user to reach specific targets; free
riding (simulated and real environment), where user has

" AEnima Launcher1.0 =
File About
[ ocaL HOST] [Exampie 1 ~| comi -
[oPeNGL v | [1029x788 ~| [ -
] Fullscreen vsinch 8 = |
Command line
LOCAL HOST Example 1 OPENGL 1024 768 FALSE 16 FALSEC

[Eharamare intertace wasuie

Fig. 3. BCI++ main components: HIM and AEnima launchers, EEG
acquiring window and logos.
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Fig. 4. Main windows of NEVRAROS Display Interface. (a) Primary
module, which also load graphic elements such as mini map of the overall
environment. (b) Selection module. Upper arrow is blinking for stimulating
patient, and central cursor is moving for reaching desired destination. (c)
Navigation module. While mobile device is reaching selected destination, a
video stream is presented to user, as well as an intuitive indication of path
selected (the room where the target resides is highlighted) and the overall
progress of the path (little arrows on top indicate percentage of path already
crossed. (d) Supervisor module, for tuning interface's parameters up.

complete control of interface and device robot over concrete
environment.

The blink sensor is a custom made electronic device
created in order to detect visual stimulation offered by the
user interface. This device is composed by a photodiode,
which observes light emission changing frequencies, and an
electrical circuit that transforms the information given by the
photodiode in a suitable electrical signal for the amplifier.
The blink sensor is an analogical device, and it can
distinguish between only two light emission levels. Low
level is set to zero (equivalent to no significant light
emission detected), while a potentiometer allows user to
manually select suitable range for high level. A led is also
provided for external visual feedback, and works as follow:
a solid green represents an high light emission, while no
reaction represent no light emission. The device is battery
powered, and is provided with suitable external cables
terminating with a jack that transmit output signal, for
connecting it to the amplifier.

Concerning robot device to use within the system, two
main choice are available. The first is Fred: an holonomic
robot produced by "Team Artisti Veneti" and builded with
hexagonal structure and three omnidirectional wheels. In this
way the robot is able to move to any position in the plane
without rotate itself. The robot is also fit with a
framegrabber for video acquisition and an audio board and
WiFi connectivity. The robot also has an omni-directional
camera with an hyperbolic mirror. WowWee RovioTM is a
mobile wireless IP camera with a three-wheeled drive
system. The second choice is Rovio: an inespensive personal
robot available in the market. Rovio is equipped with a
microphone and a camera to remotely transmits its
perceptions and IR sensors on the front for basic obstacle
avoidance.

B. Architecture
Previously, a general system description from components
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(b) (c)

Fig. 5. Blink sensor and robotic devices. (a) Blink sensor. The black cap
store the photodiode and assure protection against external artifacts. (b)
WowWee Rovio holonomic robot. (c) Team Artisti Veneti Fred holonomic
robot.

point of view was described. Now the system is presented
from activities point of view. A general scenario for system
behavior can be describe as follow. The set of electrodes is
placed over user head skin, in position Oz, Pz, Cz, Fz. For
the scope of P300 classification, 4 sites are enough for signal
acquisition. Midline is choose for equalize different
hemisphere contribute to resulting signal. EOG site (left eye)
is also included for acquiring eyes muscles activity and
removing it from brain signal. Once electrodes are set up,
user brain activity from visual stimulation is sent through
amplifier, for pre processing, to SCAN and HIM, for
classification. Classification algorithm in use is based into
SVM and ICA, evolution of previous algorithm created by F.
Piccione et al. [27], here adapted for execution into HIM
module. Together with brain signals, HIM also receive from
Blink sensor a square wave, and from AEnima a set of
triggers for stimulation timing. Once classification is
finished, Aenima receives from HIM results from
classification, and use them for update user interface and
preparing new set of stimuli (or other activities).

User Interface manages goal-based target selection. It is
composed by four logical modules:

* Primary module: Starting module that control the overall
subsystem. It calls Supervisor module for setting up
specific parameters of selection and navigation, and
manages Selection and Navigation module execution and
activity. It also loads all necessary resources and
graphical elements of the interface.

Selection module: module that control the destination
selection paradigm. A central ring containing a cursor is
presented to patient. In each edge of the ring a directional
arrow represents one of the four possible destinations
achievable at each iteration. Near each arrow a small
picture representing the destination is also available. The
four arrows blink in casual sequence, and their blinking
represents the visual stimulation for the patient. He must
express his cognitive act of concentration every time the
arrow indicating the destination he decided to reach
blinks. Each time a cognitive act of concentration is
recorded and connected to a particular blink, the cursor
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moves for one step in the corresponding arrow's
direction. Once one of the edges is reached by the cursor,
the Interface choose that destination as selected
destination, sends to mobile device opportune commands
for reach it in the real environment and calls Navigation
module for execution. Since visual stimuli are limited in
number, reaching no target determines no Navigation
module calling nor commands to mobile device sending.
In such this case, Selection module wait for a little time
and then ask for a new selection session.

Navigation module: module that control the navigation
process of the mobile device and presents to user the
video feedback in coming. A central window shows the
video stream from the mobile device. Upper indicators
shows overall progress in the path. Once mobile device
reach selected destination, a binary choice is offered to
user, with the same paradigm of previous selection task.
Here user can decide if reach a new target or else take a
look again to current destination achieved. Once such
this decision is made, Navigation module calls back
Selection module for a new selection session.

Supervisor module: this module is hidden from user
interface, and is visible only from secondary screen
dedicated to system supervisor. Here supervisor can tune
the interface up for the navigation session, selecting
which modality use for next session (learning, testing or
real navigation), how many elementary steps the central
cursor must do for reach external edges, and more. From
here a blinking square is also selectable, if use of Blink
sensor is expected.
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Paths and targets are controlled by device robot itself.
NEVRAROS only keeps some information about possibly
targets and overall environment composition for updating
graphic elements and proposing new target picture near
stimulation arrows. So, robot device only receives from
AEnima high-level commands for navigation (target-to-
reach identity number). Together with the video stream, the
robot also sends status messages concerning its execution.

VI SYSTEM EVALUATION

First test sessions have brought useful information for
characterize the system performance. At first, the system
has been tested over a healthy patient, without utilization
of the robotic device (and therefore operating solely on
virtual environment). 8 training sessions and 4 testing
sessions has been prepared, plus a subsequent session of
free navigation, in order to test the quality of general
communication system components. Subsequent tests on 2
healthy subjects were performed for evaluating
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Fig. 7. NEVRAROS performances evaluation summary concerning one of
the healthy patients. (a) traces average diagram; (b) classification
performance trend; (c) classification output.

performance level of the algorithms for classification and
selection of targets: for each of the two patients were
prepared 6 to 8 sessions of learning and testing. Since
these tests were prepared for check on the efficiency of
algorithms for classification, the robotic support has not
been used, (test limited to virtual environment). Latter
evaluation rounds results show a classification accuracy
that is close to 80%, and an robustness index greater than



TABLEI

EVALUATION RESULTS (HEALTHY SUBJECT)
BCI-skill (meanzstd)
Classification accuracy (performance %) 78.5£6.6
Transfer bit rate (bit/min) 7.99+4.51
Percentage of sessions successfully completed (%) 875
Training Number of Stimuli (TNS) 231
Performance trend (%/session) -158

85%.

Further testing are planned with a patient suffering from
ASL (subject:male, 50 y.o, white, italian). On that occasion
the navigation system of the robot will be tested out of the
lab, i.e. in the hospital, preparing a navigable environment
adjacent to the patient's room. Moving such a patient to
the laboratory would in fact be very difficult.

VII. CONCLUSIONS

The NEVRAROS system described in this paper proved to
be effective and reliable in healthy subjects. Experiments
with ASL patients are planned in the near future to asses the
rehabilitation effectiveness of such robotic BCI system. The
modularity of the described system and the open-source
solutions adopted enable the continuous improvement of the
system by integrating new modules and new solutions as
soon as they will be developed by other research groups.
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Safe Human-Robot Interaction based on a Hierarchy of Bounding
Volumes
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Abstract—This paper presents a novel human-robot
interaction system which guarantees the safety of human
operators which cooperate with robotic manipulators. In
particular, this system computes on realtime the minimum
distance between the human operator and the robotic
manipulator and modify the trajectory of the robot
accordingly. The system is integrated by two elements: a
human tracking system and a hierarchy of bounding volumes.
The tracking system combines the measurements of a motion
capture system and an UWB localization system by a modified
Kalman filter and thus the movements of the human are
registered with accuracy. The hierarchy of bounding volumes
covers the bodies of the human and the robot so that the
minimum distance between them can be computed efficiently.
A new distance computation algorithm based on this hierarchy
has been developed. Finally, the system has been applied on a
real task.

I. INTRODUCTION

HUMAN-ROBOT interaction is becoming more and
more widespread in robotics because of the benefits of
combining the precision and the repeatability of robots with
the intelligence and the dexterity of humans. This
cooperation between humans and robots is mainly applied in
service robotics applications [1] but it is scarcely used in
industries. In industrial environments, robotic manipulators
are usually isolated in fenced workspaces where humans do
not enter in order to avoid collisions [2]. Therefore,
industrial tasks cannot benefit from the human-robot
cooperation. In order to overcome this limitation, the current
paper develops a new human-robot interaction system which
avoids the risk of collision by tracking precisely not only
robotic manipulators but also human operators who
collaborate in the task. This human-robot interaction system
is composed of two main components: a human tracking
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system and a hierarchy of bounding volumes. The human
tracking system registers with high precision all the
movements of the human operator while the hierarchy of
bounding volumes covers the bodies of the human and the
robot so that the minimum distance between them can be
computed efficiently.

The human tracking system integrates two subsystems: an
inertial motion capture system and an Ultrawideband
(UWB) localization system. Their measurements are
combined by a modified Kalman filter which obtains not
only precise relative rotation measurements between the
limbs of the body (such as previous systems [3][4] but also a
precise global positioning of these limbs in the workspace.
In addition, the positions of the robotic manipulator’s links
are computed by forward kinematics from the joint angles
obtained from the robot controller. Thereby, the tracking
system enables the human-robot interaction system to find
the spatial relations between the human and the robot on
realtime. In particular, the measurements from the tracking
system can be used to compute a precise approximation of
the human-robot distance and modify the robot’s movements
accordingly.

However, the tracking system considers the human and
the robot as wire skeletons and do not take into account the
real dimensions of their limbs and links. In order to develop
a more realistic model of them, these skeletons have been
covered by a set of bounding volumes which represent the
surface of their bodies. A three-level hierarchy of bounding
volumes has been implemented to improve the efficiency of
the human-robot distance computation in comparison to
previous systems [5][6]. Each level is composed of a
different group of bounding volumes, which cover the
human and robot bodies more precisely than the previous
level but increases the required number of pairwise distance
tests. A new minimum distance computation algorithm has
been developed in order to reduce the number of pairwise
distance tests by combining the three levels of this hierarchy
of bounding volumes.

This paper presents the developed human-robot
interaction system. Section 2 describes the components and
the fusion algorithm of the human tracking system. Section
3 describes the hierarchy of bounding volumes and the
implemented human-robot distance computation algorithm.
In section 4, the human-robot interaction system is applied
on a real task where the human helps the robot to
disassembly a small electrical appliance. Finally, section 5
presents the conclusions and the future work.



II. HUMAN TRACKING SYSTEM

A. Components of the Human Tracking System

The human tracking system integrates an inertial motion
capture system and a UWB localization system. The inertial
motion capture system [7] is composed of 18 IMUs (Inertial
Measurement Units) which are attached to the main body
parts of the human operator. Each IMU contains 3 MEMS
(Micro-Electro-Mechanical ~ Systems)  gyroscopes, 3
accelerometers and 3 magnetometers whose measurements
are combined [8] in order to obtain the orientation (relative
rotation angles) of the limb to which the IMU is attached.
These rotation measurements are applied over the bones of a
skeleton (see Fig. la) which represents the structure of the
human’s body. Similarly, the joint angles of the 7 D.O.F
robotic manipulator obtained from its controller are also
applied over a skeleton (see Fig. 1b).
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Fig. 1. Skeletal structures obtained by the tracking system for: (a) the
human operator and (b) the 7 D.O.F robotic manipulator.

Whereas the robotic manipulator is fixed at a predefined
position in the environment, the human operator can move
around the workplace. Therefore, not only the relative
rotation angles between the limbs are required, but also the
global position of the human has to be known. The inertial
motion capture system determines the human’s global
position by applying a foot step extrapolation algorithm to
the legs’ rotation data. Nevertheless, this algorithm
sometimes does not detect steps correctly and accumulates
some errors. In order to solve this problem, an additional
localization system based on UWB signals has been used.
The UWB localization system [9] is composed of five
devices: a small tag which is carried by the human operator
and four sensors which are installed at fixed positions of the
workplace. These four sensors compute the position of the
human by triangulating the UWB pulses which are sent by
the tag. Finally, the tracking system combines these
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positions measurements from the UWB system with the
measurements from the inertial motion capture system in
order to localize precisely the human operator.

B. Inertial-UWB Fusion Algorithm

Although the UWB localization system provides a precise
positioning of the human operator, its sampling rate is much
smaller than the motion capture system’s frequency (5-10Hz
and 30-120Hz, respectively). Therefore, the global position
measurements of the motion capture system should be used
between each pair of UWB measurements in order to keep a
suitable sampling rate. This combination of measurements is
implemented by a fusion algorithm based on a Kalman filter
which is shown in Table I.

TABLEI

INERTIAL-UWB FUSION ALGORITHM

01: Initialize Kalman Filter’s parameters: Py, Q, R.
02: Initialize YT with the first two measurements: Gpl‘ Upz
03: for each measurement p¢

04: if peis from the inertial motion capture system G
05:  if pe1 is from the UWB localization system U
06: Recalculate YT from P and X¢q

07:  endif

08:  Transform p; from G to U by applying "T¢

09: [x¢, P¢{] = KalmanFilterPrediction (p, Pr.1, Q)
10:  Store xas position estimate for time ¢.

11: else if p. is from the UWB localization system U
12:  [x:, P¢] = KalmanFilterCorrection (ps, Pe.1, R)
13:  Store xas position estimate for time ¢.

14: end if

15: end for

The state of the implemented Kalman filter is composed
by the 3D coordinates x=(x,, y, z;) of the global position of
the human operator with respect to coordinate system U of
the UWB system. Each time a measurement p; from one of
the tracking systems is registered; one step of the Kalman
filter is performed in order to obtain the state estimate x, and
its corresponding error covariance Py. In particular, when a
measurement from the motion capture system is registered
(line 4, Table I), it is transformed to the U frame by applying
the matrix T (line 8, Table I) and then it is used as input
for the prediction step of a standard Kalman filter (line9,
Table I) together with the previous error covariance Py and
the mean error covariance Q of the inertial motion capture
system. When the measurement p; is from the UWB
localization system, it is used as input to the correction step
of the Kalman filter (line 12, Table I) together with P, and
the mean error covariance R of the UWB system.

In addition, each time the correction step of the Kalman
filter is executed, the transformation matrix YT¢g is
recalculated through the computed position estimate x¢; and
the next measurement p, from the motion capture system
(line 6, Table I). Since this transformation matrix is applied
to every measurement from the motion capture system, the
error accumulated until this moment by the motion capture
system is corrected.



III. HIERARCHY OF BOUNDING VOLUMES

A. Components of the Hierarchy of Bounding Volumes

As stated above, the tracking system considers the bodies
of the human operator and the robot as linear skeletons but it
does not take into account the real dimensions of the
surfaces which cover the bones. Therefore, it is necessary to
model these surfaces in order to compute more precisely the
human-robot distance. Although a mesh of polygons is one
of the most standard and detailed representations, it is not
suitable for realtime distance computation due to its high
computational cost. A representation based on bounding
volumes is more suitable provided that it fulfills two
requirements: thigh fitting to the body and efficient distance
computation. Previous similar human-robot interaction
systems [5][6] develop bounding volumes approaches based
on spheres due to their inexpensive distance computation.
Nevertheless, one sphere per limb does not fit tightly the
bodies of humans and robots and thus these sphere-based
approaches need to increase substantially the number of
bounding volumes per limb. Unfortunately, this increase in
the number of required spheres reduces the performance of
the distance computation.

This paper presents a new approach based on Sphere-
Swept Lines (SSLs) which overcomes these limitations of
previous spherical models. On the one hand, a SSL is a
bounding box volume obtained from the Minkowski sum of
a sphere and a segment [10], which fits more tightly the
human’s and robot’s bodies with only one bounding volume
per limb. On the other hand, the computational cost of the
distance computation between two SSLs is quite small
because it is based on the distance computation between the
inner segments of the SSLs [11]. Since this geometric
modeling involves 18 SSLs for the human operator and 8
SSLs for the robotic manipulator, 144 pairwise distance tests
are required. A three-level hierarchy of bounding volumes is
proposed for each agent (human and robot) in order to
reduce the number of pairwise distance tests and improve
the computational efficiency of the distance computation.

The first level of this hierarchy is composed by one global
AABB (Axis-Aligned Bounding Box) for each agent. The
second level of the hierarchy is composed by a set of local
AABBs which cover the main limbs of their bodies. Finally,
the third level of the hierarchy covers each bone of their
skeletons (see Fig. 1) with a SSL. Table II shows the
components of the hierarchy of bounding volumes which
cover the human operator. In particular, the second level of
this hierarchy is composed by 5 AABBs and the third level
contains 18 SSLs. Table III shows the components of the
hierarchy which cover the robotic manipulator. In particular,
the second level of this hierarchy contains 3 AABBs and the
third level contains 8 SSLs.
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TABLEII
HIERARCHY OF BOUNDING VOLUMES FOR THE HUMAN

Level 1 Level 2 Level 3
Left Lower Limb Left Thigh SSL
AABB LeftLeg SSL
Left Foot SSL
Right Lower Limb nght Thigh SSL
AABB Right Leg SSL
Right Foot SSL
Abdomen SSL
Thorax SSL
Torso-Head AABB Neck SSL
Global AABB Head SSL
Left Shoulder SSL
Left Upper Limb Left Arm SSL
AABB Left Forearm SSL
Left Hand SSL
Right Shoulder SSL
Right Upper Limb Right Arm SSL
AABB Right Forearm SSL
Right Hand SSL
TABLE III
HIERARCHY OF BOUNDING VOLUMES FOR THE ROBOT
Level 1 Level 2 Level 3
Base SSL
Base AABB S1SSL
Arm AABB 2§ gzt
Global AABB ELSSL
E2 SSL
Forearm AABB W1 SSL
W2 SSL

As shown in Tables II and III, each level of the hierarchy
contains several bounding volumes of the immediately
inferior level. Therefore, each level provides a more
efficient distance computation than the following level but
the calculated distance is less accurate. This fact implies that
the upper levels (levels 1 and 2) will be used when the
human and the robot are far away from each other and no
accurate distance computation is needed. However, when
the human and the robot collaborate too close, the third level
is compulsory because its bounding volumes provide a more
precise distance value. In order to reduce the number of
pairwise tests which are performed when the third level is
applied, a new distance computation algorithm which
combines all the levels of these hierarchies has been
developed and explained in the following section.

B. Human-Robot Distance Computation

The algorithm implemented for the computation of the
human-robot distance combines the three levels of the
hierarchy of bounding volumes described above with two
main goals. On the one hand, it calculates the human-robot
distance with the sufficient degree of accuracy required by
the task. On the other hand, it optimizes the number of
pairwise distance tests so that the final performance of the
algorithm is maximum. Table IV presents a pseudo-code
summary of the algorithm’s implementation.

The selection of one level of the hierarchy of bounding
volumes for the distance computation depends on two



distance threshold values (DIST;, and DIST,;) which
identify the required degree of accuracy. Firstly, the human-
robot distance is computed from the two global AABBs of
the first level (line 3, Table IV). If this distance is greater
than the threshold DIST;,, no further computation is needed
and the AABB distance mdistl is used as the human-robot
distance (line 5, Table IV).

In other cases, the algorithm computes the AABBs of the
second level (line 7, Table IV) by looking for the maximum
and minimum coordinates of the contained bones of the
tracking system’s skeletons and adding to them the
maximum radius of the contained SSLs. Afterwards, all the
distances dist2[] between each pair of AABBs are computed
(line 8, Table IV) and sorted out in ascending order (line 9,
Table IV). The minimum value mdist2 of all these distances
(line 10, Table IV) is used as the final human-robot distance
if it is greater than the threshold DIST,; (line 12, Table IV).

Finally, if the computed distance mdist2 is smaller than
DIST,;, the third level of the hierarchy is needed because
the human and the robot are too close to each other. The
algorithm generates the SSLs (lines 19-20, Table 1V)
contained by the two closest AABBs of level 2 which are in
the first position of the array dist2[] since it is ordered in
ascending order. If the minimum distance mdist3 (line 21,
Table IV) between these SSLs is smaller than the distance
between the following AABBs in dist2[], this value is used
as the final human-robot distance (line 23, Table IV). If this
condition is not verified, the algorithm will continue looking
for the closest SSLs by visiting each element of the dist2]]
array and generating the corresponding SSLs. Thereby, this
algorithm calculates the minimum human-robot distance
between the SSLs and avoids executing all the pairwise tests
in most cases.

TABLE IV
HUMAN-ROBOT DISTANCE COMPUTATION ALGORITHM

: Initialize distance thresholds: DIST;,, DIST;

02: Generate AABBs of Level 1: AABBly, AABB1y
03: mdist1= MinimumDistance(AABB1y, AABB1R)
04: if (mdist1 > DIST);)

05: minDist= mdist1

06: else

07: Generate AABBs of Level 2: AABB2y[], AABB2g|]
08: dist2[]= PairwiseDistance(AABB2y[], AABB2g[])
09: dist2[]= SortInAscedingOrder(dist2[])

10: mdist2= MinimumValue(dist2[])

11: if (mdist2 > DIST,3)

12:  minDist= mdist2

13: else

14:  mdist3= FLOAT_MAX VALUE

15:  for each element i in dist2[]

16: if (mdist3 < dist2[i])

17: break

18: end if

19: Generate SSLs inside AABB2y[i]: SSL3x[]
20: Generate SSLs inside AABB2g[i]: SSL3g|[]

21: mdist3= MinimumDistance(SSL3y[], SSL3g[])
22:  end for

23:  minDist= mdist3

24: end if

25: return minDist
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IV. EXPERIMENTAL RESULTS

The human tracking system and the hierarchy of bounding
volumes are combined in order to build a human-robot
interaction system which enables the development of safe
tasks where humans and robots collaborate. The tracking
system provides a realtime localization of all the bones of
the human and the robot. These bones are covered by the
hierarchy of bounding volumes in order to obtain an
efficient and precise estimate of the minimum human-robot
distance. This distance value can be used by the human-
robot interaction system in order to modify the behaviour of
the robot when a risk of collision is detected.

In order to verify the correctness of the proposed system,
it has been applied on a real task where a human operator
and a 7 D.O.F Mitsubishi PA-10 robotic manipulator
cooperate in the disassembly process of a small electric
appliance (a fridge). The human operator wears the
GypsyGyro-18 inertial motion capture suit [7] and an
Ubisense UWB tag [9] which compose the human tracking
system.

In this task, the robot removes the screws from the rear lid
of the fridge and leaves them inside a storage box.
Meanwhile, the human operator opens the door of the fridge
and empties its contents. Thereby, the repetitive subtasks are
performed by the robot while the subtasks which require
more intelligence and dexterity are performed by the human.
Furthermore, the human-robot interaction system computes
on realtime the minimum human-robot distance and
activates a safety strategy if this distance is smaller than a
threshold (1m). This strategy stops the current trajectory of
the robot and moves the robot away from the human so that
the safety distance is kept.

Fig. 2 shows the evolution of one execution of the
developed disassembly task. Each subfigure shows a
photograph of the real scenario and a 3D representation of
the corresponding SSLs which cover the skeletons of the
human and the robot. Figs. 2a and 2b depict how the robot
begins to follow the trajectory towards the rear lid of the
fridge to remove the screws. However, when the human
approaches the fridge, the human-robot distance goes below
the safety threshold and the safety strategy is activated. The
robot moves away from the human (Fig. 2c) in order to
maintain the safety distance. Meanwhile, the human operator
opens the fridge’s door (Fig. 2c) and extracts all its contents
(Fig. 2d) in order to carry them to a storage box which is
outside the workplace. When the human operator moves
away and the human-robot distance is again bigger than the
safety threshold, the safety behaviour is deactivated and the
robot continues tracking the original trajectory (Figs. 2e and
2f) to unscrew the rear lid of the fridge.

Fig. 3 depicts the evolution of the computed human-robot
distance along the development of the task. From instant
3.6s to instant 7.4s, the human operator approaches the
fridge and the human-robot distance is reduced until it goes
below the safety threshold. Then, the safety strategy is



(d) (e)

Fig. 2. Evolution of the disassembly task where the human and the robot collaborate with the surveillance of the human-robot interaction system.

activated and the robot maintains the safety distance
between instants 7.4s and 18.3s. Afterwards, the human-
robot distance is again greater than the safety threshold
when the human takes away the fridge’s contents to an
external storage box. The normal behaviour of the robot
manipulator is taken up again. The thresholds for the
distance computation algorithm have been set to the
following values in this task: DIST;; = 2m and DISTy; =
Im.

Fig. 4 shows a histogram of the number of pairwise
distance tests which are executed during the task. In the
76.8% of the executions of the distance algorithm, the
number of performed pairwise tests is less than 20. Between
20 and 80 pairwise tests are required in 12% of cases.
Finally, only in 11.2% of cases, the distance algorithm needs
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to perform more than 80 pairwise tests. These results prove
that the developed algorithm reduces substantially the
number of required pairwise distance tests in comparison
with a simple bounding volume approach without any kind
of hierarchy which will always need 144 tests for the SSLs.
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Fig. 4. Histogram of the number of pairwise distance tests which are
required to compute the human-robot distance.

V. CONCLUSIONS

This paper presents a new human-robot interaction system
which computes the distance between human operators and
robotic manipulators that work together in the same
workspace. The main goal of the system is to adapt the
movements of the robots to the movements of the humans
and thus any collision between them is avoided. Therefore,
this system needs to track on realtime all their movements.
The movements of the robot are easily registered by
obtaining its joints’ angles from the controller. In the case of
the human operator, a tracking system which registers the
movements of all the human’s limbs is required. This human
tracking system has been implemented by fusing the
measurements of an inertial motion capture system and a
UWRB system. The inertial motion capture system provides
the relative rotation values between the human’s limbs. The
UWB system is used to correct the global position
measurements of the inertial motion capture system by
applying a modified Kalman filter. This fusion algorithm is
based on a new approach which relates the two steps of the
filter (prediction and correction) with the complementary
features of these systems (the high sampling rate of the
inertial motion capture system and the localization accuracy
of the UWB system).

The ends of the human’s limbs are localized precisely
with this tracking system and the ends of the robot’s limbs
are also localized by applying forward kinematics to the
controller’s joint angles. Nevertheless, a group of bounding
volumes is required to model the surface of the human’s and
robot’s bodies and get a better estimate of the human-robot
distance efficiently. This paper presents a novel hierarchy of
bounding volumes which integrates three levels composed
by AABBs and SSLs. This hierarchy in conjunction with the
proposed distance computation algorithm reduces the
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number of pairwise tests between bounding volumes which
need to be completed before the distance is obtained.
Finally, this distance computation algorithm has been
implemented for a real human-robot interaction tasks and
the improvements in the distance computation performance
have been quantified.

The calculated human-robot distance has been used as the
trigger for a safety strategy which stops the robot tracking
the normal trajectory and creates a new one which moves
the robot away from the human. In future research, the
authors will develop more complex strategies which avoid
stopping the normal robot’s trajectory.
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Interaction in Uncontrolled Environments
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Abstract—This article describes a robust and real-time hand
gesture recognition system meant to allow a natural interaction
with a service robot in dynamic environments. The proposed
approach uses context information to detect hands robustly and
in real time on a low-end processing unit (standard notebook).
Static gestures are recognized using boosted classifiers, which are
built using training techniques that decrease the burden on the
human annotator, such as active learning and bootstrap.
Dynamic gestures are recognized using a novel method that
extracts geometrical features from the hand trajectory, thus
avoiding explicit temporal variability analysis as in traditional
Hidden Markov Models. Simultaneous gesture segmentation and
recognition is carried out using a standard Naive Bayes classifier
for finding candidate subsequences that give high scores when
matched to a gesture. The system’s performance is validated on
two applications involving Bender, a service robot: playing rock-
paper-scissors and giving simple commands.

Index Terms— static hand gesture recognition, dynamic hand
gesture recognition, human robot interaction, RoboCup @Home.

I. INTRODUCTION

I Iand gestures are extensively employed in human non-

verbal communication. They allow to express orders, mood
state, and to transmit some basic cardinal information. In some
special situations they can be the only way of communicating,
as for instance in the cases of deaf people communication
(sign language), police’s traffic coordination in the absence of
traffic lights, and in general, communication in noisy
environments.

Thus, it seems convenient that human-robot interfaces
incorporate hand gesture recognition capabilities. Such
interfaces allow building interfaces for disabled people, as
well as implementing ubiquitous multimedia mobile control
for social/personal robots. For instance, we would like to have
the possibility of transmitting simple orders to personal robots
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using hand gestures. The recognition of hand gestures requires
both hand detection and gesture recognition. Both tasks are
very challenging, mainly due to the variability of the possible
hand gestures (signs), and because hands are complex,
deformable objects (a hand has more than 25 degrees of
freedom, considering fingers, wrist and elbow joints) that are
very difficult to detect in dynamic environments with cluttered
backgrounds and variable illumination.

In this context, we are proposing a robust and real-time
hand gesture recognition system to be used in the interaction
with personal robots. We are especially interested in dynamic
environments such as the ones defined in the RoboCup
@Home league [15], with the following characteristics:
variable illumination, cluttered backgrounds, (near) real-time
operation, large variability of hands’ pose and scale, and
limited number of gestures (they are used for giving the robot
some basic orders).

The developed system is able to recognize static and
dynamic gestures, and its most innovative features include:

- The use of context information to achieve, at the same
time, robustness and real-time operation, even when using a
low-end processing unit (standard notebook), as in the case of
humanoid robots. The use of context allows adapting
continuously the skin model used in the detection of hand
candidates, to restrict the image’s regions that need to be
analyzed, and to cut down the number of scales that need to be
considered in the hand-searching and gesture recognition
processes.

- The employment of boosted classifiers for the detection of
faces and hands, as well as the recognition of static gestures.
The main novelty is in the use of innovative training
techniques —active learning and bootstrap—, which allow
obtaining a much better performance than similar boosting-
based systems, in terms of detection rate, number of false
positives and processing time.

- The use of temporal statistics of the hand positions and
velocities and a Bayes classifier to recognize dynamic
gestures. This approach is different from the traditional ones,
based on Hidden Markov Models.

The hand gesture recognition system has been adapted to be
used in Bender [32], an innovative social robot that has been
employed as personal robot for home environments [33],
lecturer for school children [34], referee for robot soccer [35]
and natural interface for Internet access [36].
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Two applications of the hand gesture recognition abilities of
the Bender robot are presented. In the first application, the
static gesture module recognition is used to implement the
rock-paper-scissors game. The application has been validated
with several users in uncontrolled indoor environments. The
obtained gesture recognition rate (rock, paper and scissors
gestures) is 72.6%. As a second application, we have
implemented a system to interact with the robot and give him
simple orders in noisy environments. We have designed a set
of dynamic gestures that allows moving the robot, waving its
hand, and saying him “yes” and “no” (see fig. 3). The system
has been validated with a database of 150 gestures, articulated
by 5 different users. The obtained recognition rate is 78.5%.

This article is focused on the description of the static and
dynamic gesture recognition approaches. In section II we
present related work. In section III we present an overview of
the gesture recognition system as a whole. The static and
dynamic gesture recognition approaches are described in
sections IV and V. Results of the application of these
approaches are presented and analyzed in section VI. Finally,
some conclusions of this work are given in section VII.

II. RELATED WORK

Several hand detection and hand gesture recognition
systems have been proposed. Early systems usually require
markers or colored gloves to make the recognition easier.
Second generation methods use low-level features as color
(skin detection) [4][5], shape [8] or depth information [2] for
detecting the hands. However, those systems are not robust
enough for dealing with dynamic conditions; they usually
require uniform background, uniform illumination, a single
person in the camera view [2], and/or a single, large and
centered hand in the camera view [5].

Boosted classifiers allow the robust and fast detection of
hands [3][6][7]. In addition, the same kind of classifiers can be
employed for detecting static gestures, as shown by Kolsch
and Turk [3], who based their work on Viola and Jones’
cascade of boosted classifiers[13]. Our main contribution over
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previous work are the use of a much powerful learning
machine (nested cascade with boosted domain-partitioning
classifiers), and the use of better training procedures, which
increase the performance of the classifiers.

As for dynamic gestures, in this work, we are interested in
purely visual recognition of gestures that are determined only
by the trajectory of the hand (not its pose). Dynamic gesture
recognition faces two challenges.

The first challenge is modeling the gesture itself, accounting
for spatial and temporal variability. HMMs have become the
predominant approach in dynamic gesture recognition
systems[20]-[24][26]. Following [16], we use simple features
such as hand position and hand velocity in order to represent
the hands detected in each frame. However, our approach is
based on a quite different strategy, which involves computing
overall geometric and kinematic information that is
independent of the length of the performed gesture. This
draws comparisons to other techniques, such as Dreuw[30],
Cui et al. [19], Motion History Images [18][25], Time Delay
Neural Networks [27], and bag of words approaches [28].

The second challenge is to extract (segment) the gesture out
of a continuous stream of hand movement information. Start
and end points of a gesture are unknown beforehand, and the
simplest approach to gesture segmentation involves using low-
level information such as hand velocity, acceleration and angle
variations [26][3][17][29]. A second category of methods
performs segmentation and detection simultaneously, by
finding intervals that match gesture models with high
probability, as the CDP method in [16] or HMM-based
methods in [31][20][23]. In our system we adopt both
methods: gesture segmentation and recognition are achieved
simultaneously by finding candidate subsequences that give
high scores when matched to a gesture, while low level
information —such as hand velocity and undetected (probably
out of range) hands— is also used to detect boundaries.

The proposed approach relies on accurate hand detection
and tracking as well as face detection and tracking. Face
position and size are needed in order to gain invariance to



translation and scale. The hand and face detection module is
based on Viola and Jones’ cascade classifiers [13], while
tracking is achieved with the mean-shift technique. Details can
be found in previous works [10][11].

III. HAND GESTURE RECOGNITION SYSTEM: SYSTEM
OVERVIEW

The hand gesture recognition system as a whole consists of
five modules: Face Detection and Tracking (FDT), Skin
Segmentation and Motion Analysis (SMA), Hand Detection
and Tracking (HDT), Static Gesture Recognition, and
Dynamic Gesture Recognition (see figure 1).

The FDT module is in charge of detecting and tracking
faces. These functionalities are implemented using boosted
statistical classifiers [11], and the mean shift algorithm [1],
respectively. The information about the detected face (DF) is
used as context in the SMA and HDT modules. Internally the
CF1 (Context Filter 1) module determines the image area that
has to be analyzed in the current frame for face detection,
using the information about the detected faces in the past
frame.

The SMA module determines candidate hand regions to be
analyzed by the HDT module. The Skin Segmentation module
uses a skin model that is adapted using information about the
face-area’s pixels (skin pixels). The module is implemented
using the skindiff algorithm [9]. The Motion Analysis module
is based on the well-known background subtraction technique.
CF2 (Context Filter 2) uses information about the detected
face and the human-body dimensions to determine the image
area (HRM: Hand Region Mask) where a hand can be present
in the image. Only this area is analyzed by the Skin
Segmentation and Motion Analysis modules.

The HDT module is in charge of detecting and tracking
hands. These functionalities are implemented using boosted
statistical classifiers and the mean shift algorithm,
respectively. CF3 (Context Filter 3) determines the image area
where a hand can be detected in the image, using the
following information sources: (i) skin mask (SM) which
corresponds to a skin probability mask, (ii) motion mask
(MM) that contains the motion pixels, and (iii) information
about the hands detected in the last frame (DH: Detected
Hand).

The Static Gesture Recognition module is in charge of
recognizing static gestures. The module is implemented using
statistical classifiers: a boosted classifier for each gesture
class, and a multi-class classifier (C4.5 pruned tree [14]) that
makes the final decision. The Dynamic Gesture Recognition
module spots and recognizes dynamic gestures. This module
computes temporal statistics of the hand positions and
velocities, which are fed a Bayes classifier that recognizes the
gesture.

IV. STATIC GESTURE RECOGNITION

In order to detect hands in the image, a nested cascade of
boosted classifiers is applied on whichever skin blobs have
been found. Static gestures are recognized using Boosted
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classifiers. Since it is difficult to build a generic hand detector,
we have switched the problem by stipulating that the hand is
first detected when performing any of the predefined gestures,
and it is tracked afterwards using the mean-shift algorithm.
Once the hand is being tracked, in order to determine which
static gesture is being expressed, a set of gesture detectors is
applied in parallel over the regions of interest delivered as an
output of the tracking procedure. Each gesture detector is
implemented using a cascade of boosted classifiers. We have
implemented detectors for the following gestures: pointing,
five, palm, fist and victory (figure 2).

Due to noise or gesture ambiguity, it could be the case that
more than one gesture detector will have positive results for a
given region of interest. In order to discriminate among these
gestures, a multi-gesture classifier (J48 tree) is built and
applied to the output of the gesture detectors as whole. Each
gesture detector delivers the following attributes:

conf: sum of the cascade confidence’s values of windows

where the gesture was detected (a gesture is detected at

different scales and positions),

numWindows: number of windows where the gesture was

detected,

meanConf: mean confidence value given by

conflnumWindows, and

normConf: normalized mean confidence value given by

meanConfimaxConf, with maxConf being the maximum

possible confidence that a window could get.

The gesture detectors are trained in a learning framework
which seeks to decrease the cost of having a human expert
who annotates training examples. To achieve this, we use two
procedures. The bootstrap procedure strives to acquire
negative training samples that look alike the target object (a
gesture) by iteratively adding negative samples that have been
misclassified by the classifier that has been trained up to the
moment. The active learning procedure strives to acquire
positive training samples using the system being built to guide
the selection of new samples. In this procedure, a user is asked
to perform the gesture of interest for a given time while
moving the hand until training examples of the desired
variability  (illumination, background, rotation, scale,
occlusion, etc.) are obtained. The human operator only has to
verify that the detected hand gestures are correctly detected
and adjust the alignment of the windows if necessary.

e R
“ | - A“; -~ .

Pointing Fist Victory

Fig. 2. Static gestures recognized by the system.

V. DYNAMIC GESTURE RECOGNITION

In this work, dynamic gestures are recognized (classified)
using standard statistical classifiers. Considering that a given
dynamic gesture is composed by a sequence of hand’s
positions and its corresponding dynamics, feature vectors that
characterize both positions and dynamics are defined. Gesture
segmentation (i.e., determination of the gesture start and end)
and classification are carried out simultaneously, by finding
gestures that have a high probability during many frames.



A. Representation
Each detected hand
(X,1,v,,v,,1), with (x,y) the hand’s position, (v,,v,) the

is represented as a vector

hand’s velocity, and ¢ the frame’s timestamp. In order to
achieve translation and scale invariance, coordinates (x,y) are
measured with respect to the face, and normalized by the size
of the face. Using this hand’s vector, statistics (features) that
characterize the subsequence of detections (a list of
(x, y,vx,vy,t) vectors) are calculated. The components of the

feature vector are:

DELTA X: difference between maximal and minimal
position in the x axis.

DELTA Y: difference between maximal and minimal
position in the y axis.

SLOPEQ, ..., SLOPE(c-1): so called “direction codes”,
these features are extracted by approximating the slope of
each of ¢ segments of equal length in which the hand
trajectory is divided. This approximation is expressed as
one of eight possible values for each “basic” orientation
in space (up, up-left, left, left-down, etc.).

HIST2DOO, ..., HIST2D(n-1)(m-1): a binary image drawn
on a nxm grid that spans the tightest bounding box that
includes all hands detected in the observed frames, though
some adjustments are allowed in order to minimize
distortion of the gesture). The value of HIST2Dxy is 1 ifa
hand has passed through cell (X,y), 0 otherwise.

In this work, the feature vector is composed of all the
mentioned features (no feature selection is performed).

B. Classification of Segmented Gestures

Segmented gestures are characterized using the feature
vector defined in the former section, and classified using a set
of standard Naive Bayes classifiers trained using a one-
against-all decomposition. That is, for each gesture of interest
g, we train a binary classifier using all instances of g as
positive samples and every other sample in the training set as a
negative sample.

C. Gesture Segmentation and Classification

The algorithm for online dynamic gesture recognition is
divided in three stages:

1. Candidate generation: in which the aforementioned
binary classifiers are continually applied to the
incoming frame sequence. When the probabilistic
score output by any of these classifiers, averaged
along a fixed number of frames, is higher than a
threshold, this module declares the existence of a
gesture candidate.

2. Candidate evaluation: the gesture candidates generated
in the previous stage are checked (compared with
templates) in order to make sure they are sound
candidates of the gestures they supposedly represent.
Subgesture reasoning —discarding candidate gestures
that are included in a larger gesture— is also
performed in this stage.

3. Purpose evaluation: which examines the frame buffer
(updated in stage 1) and the candidate list (updated in
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stage 2) in order to decide whether the user is still
moving his hand in order to perform a gesture or if he
has decided to end the gesture.

VI. RESULTS

The developed system has been used in two applications. In
the first application, the static gesture module recognition is
used to enable Bender to play rock-paper-scissors. As a
second application, we have implemented a system to interact
with the robot and give him simple orders in environments
with uncontrolled illumination and various users.

A. Static gesture recognition

We evaluated static gesture recognition as applied to
implementing rock-paper-scissors (using gestures “fist”,
“palm” and “victory” shown in figure 2). We made a live test,
with the system running while the users made gestures in front
of the camera instead of using a video. This allows the user to
have instantaneous feedback of the gesture recognition and
adjusting his or her hand in order to achieve a better
recognition. A total of 4 users participated in the test, of which
3 did not have any prior experience with the system. All of
them were told to perform the gestures for rock, paper and
scissors during 30 seconds each, and this was repeated 3
times. Users were told to slowly move the hand, so that it
appeared against varying background objects with different
illumination conditions and from different angles. The
illumination conditions were those of a typical household.
Table 1 shows a confusion matrix. The global recognition rate
is 72.6%. While false positives do exist, this problem can be
dealt with by determining which gesture is recognized more
times in a given time interval. In figure 4 is shown an example
of a human user playing rock-paper-scissors with Bender.

B. Dynamic gesture recognition

An  uncontrolled  environment includes  variable
illumination, multiple users and a dynamic background. To
evaluate the performance of the dynamic gesture recognition
system, we recorded a database which has two of these
characteristics: uncontrolled illumination settings and five
users. The background, however, is static, and including this
factor is left for future experiments. Each user recorded three
videos in which he or she executed the gestures in figure 3 in
sequence, wearing short sleeves and taking the hand away
after each gesture. The setting in this database is a realistic
interaction with Bender: users stand in front of him, at the
sight of the camera, and they can see themselves on the tablet
PC that is installed on his chest. Most of the users were
untrained and they were given minimal instructions about the
speed and size with which the gestures should be performed.
The users did not try out the gestures before the recording
started, and the first attempt was, with few exceptions, the
definitive attempt. The results are given in Table 2, where it
can be seen that the mean recognition rate is 78.5%.
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Fig. 4. Playing rock-paper-scissors with Bender.

Fig. 3. Dynamic gestures recognized by the system: 1. RIGHT, 2. LEFT, 3.
UP, 4. DOWN, 5. CCW, 6. CW, 7. WAVE, 8. CHECK, 9. CROSS.

VII. CONCLUSIONS

In this article we described a hand gesture recognition system
that allows interacting with a service robot, in dynamic
environments and in real-time. The system detects hands and
static gestures using a cascade of boosted classifiers, and
recognizes dynamic gestures by computing temporal statistics
of the hand’s positions and velocities, and classifying these
features using a Bayes classifier. The support for dynamic
environments comes mainly from the vision system, which
uses context information to achieve robustness. The system
performance is validated in two applications: static gestures
used in rock-paper-scissors and dynamic gestures for giving
commands to the robot. The performance allows for natural
interaction despite illumination variability and multiple users;
variable backgrounds have not been extensively tested yet. It
is emphasized that many of the users that participated in the
tests were inexperienced and given a minimal set of
instructions on how to perform the gestures. The size of the
video frames is 320x240 pixels, and the on board robot
computer where the gesture recognition system runs is a
standard notebook (Tablet HP 2710p, Windows Tablet SO, 1.2
GHz, 2 GB in RAM). Under these conditions, once the system
detects the user’s face, it is able to run at a variable speed of 4-
8 frames per second.

Class\Predicted | Fist Palm Victory Unknown Detection rate
Fist 1098 71 9 71 87.9%
Palm 156 974 107 351 61.3%
Victory 61 167 1118 211 71.8%
Table 1. Results for recognition of static gestures used in rock, paper and scissors.
Gesture Total Correct Inserted Deleted Substituted % detected % reliability
RIGHT 15 14 0 1 0 93.3 93.3
LEFT 15 15 0 0 0 100 100
UP 15 15 1 0 0 100 93.8
DOWN 15 12 2 3 0 80 70.6
CCW 15 12 0 1 2 80 80
CW 15 11 0 2 2 73.3 73.3
WAVE 15 8 0 6 1 533 533
CHECK 15 14 0 0 1 93.3 93.3
CROSS 15 5 0 0 10 333 333
Total 135 106 3 13 16 78.5 76.8

Table 2. Results for dynamic gesture recognition. A total of 15 instances were tested for each gesture. Inserted gestures are gestures that were detected despite
not being executed in reality. Deleted gestures are those that failed to be recognized at all. Substituted gestures are gestures that were confused with other gesture.
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Reliability is computed as correct/(total+inserted), thus taking the inserted gestures into account.
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Abstract— Social robots are designed to cooperate with peo-
ple in their everyday activities. Thus, they should be able
to adapt to uncontrolled environments, learn new tasks and
become engaging companions for people to interact with. While
other sensory inputs are also very important, in order to provide
the social robot with the ability to interact with people using
natural and intuitive channels, it may be interesting to consider
the design and development of vision-based perceptual modules.
In this sense, stereo vision systems appear as an useful option
as they can provide 3D information, and can be mounted on
the head of a social robot. On the other hand, stereo vision-
based interfaces have to deal with limited resolution and frame
rate, occlusions, noisy images and depth ambiguity. This paper
describes the main aspects of a stereo vision-based gesture
recognition and learning interface designed to be integrated
in a social robot. This system captures, recognizes and learns
upper-body social gestures at human interaction rates.

I. INTRODUCTION

Robots have been massively used in industrial environ-
ments for the last fifty years. Industrial robots are designed
to perform repetitive, predictable tasks that may be danger-
ous, disengaging or boring for human workers. These tasks
are performed in controlled environments, where human
presence is limited and controlled, if allowed [1]. These
characteristics of both performed tasks and environmental
conditions allow to provide industrial robots with a complete
a priori knowledge database. Industrial robots are repro-
grammed only if the task they are performing changes. On
the other hand, these robots have to be aware only of a
constrained set of environmental parameters that are directly
related with programmed task. Thus, perceptual systems
mounted on industrial robots are usually simple, practical
and task-oriented.

While their usefulness is evident, industrial robots are
strongly limited. More than thirty five years ago, a new gen-
eration of robots began to appear [2]. These robots would no
more be considered useful tools. They are instead designed
to cooperate with people in everyday activities. These robots
should be able to work in uncontrolled environments and
become engaging companions for people to interact with. It
will not be possible to predict all possible situations they
will have to face, thus these robots should also be provided
with the capability to adapt to new situations, tasks and
human companions. While motor capabilities were usually
the main specification for industrial robot, for these new
robots perception becomes a key element.
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Robots that have to interact with people in everyday
environments may benefit from sharing certain perceptual
and motor human abilities. This idea influenced the use of
the term humanoid robot to name these agents, and moved
robotic researchers to address complex, engaging objectives
such as bipedal walking, multi-fingered manipulators or
stereo-based vision systems. Despite important contributions
in these fields, the idea of a robot that resembles people
in perceptual, motor and knowledge capabilities is still a
long term objective. In fact, in the last decade the more
generic term social robot has been introduced to define this
new generation of robots. Social robots are agents designed
to cooperate with people in everyday tasks. They may be
humanoid or not, but in any case they have to be social.
Following previous works [3][4], in this paper the definition
given in [5] for social robot is adopted: robots that work in
social environments, and that are able to perceive, interact
with and learn from other individuals, being these individuals
people or other social agents.

In order to become useful companions, social robots
should use natural and intuitive interaction and perception
channels. Speech recognition [4] and tactile sensors [6] are
important features for a social robot. But vision represents
the sensory input that usually provides more information
to people. Face expression, hand movements and social
gestures are key elements in social interactions [4][5]. Some
interaction processes (e.g. those involving crowded or noisy
environments) may even rely only on vision to achieve com-
munication. It is desirable for a social robot, then, to include
a vision-based interface. When dealing with the design of
such a system two important questions have to be answered:
(1) how to capture visual data from the environment; and
(i) how to process these data in order to provide on-line
response to the human user.

While other options may be possible, stereo-vision sys-
tems are the most common solution to capture visual data
[7]. These systems can be easily mounted on the head of
a robot, and they provide 3D information. Besides, they
are more similar to human eyes than other solutions, and
thus they may find less difficulties in adapting to everyday
environments, that are designed to be perceived by people.
Stereo vision systems also present drawbacks that have to be
considered: they have limited resolution, field of view and
frame rate, they are very sensitive to occlusions, and they
have to deal with noisy images and depth ambiguity [7][8].

Capturing images is just the first step in the perceptual
process. It is necessary to extract only relevant information
from the huge amount of visual input data if on-line response
is required. Biological entities filter perceived information



by attention [9]. Social robots focus also attention only in
certain relevant features of the environment. Thus, Breazeal
[4] considers controlled scenarios in which only certain
defined objects are detected and tracked. Hecht et al. [§]
label different body parts and track them using particle filters.
While their particular implementation may vary, attentional
mechanisms are present in all perceptual components pro-
posed for social robots [10][11][12][13].

According to the given definition, social robots are not
only aware of their surroundings, but they are also able
to learn from, recognize and communicate with other indi-
viduals. Robots that could learn from its observations and
experiences, and from human teachers, would be able to
adapt to new situations and perform new tasks, or improve
already known ones. While other strategies are possible,
robot learning by imitation (RLbI) represents a powerful,
natural and intuitive mechanism to teach social robots new
tasks [10]. In RLbI scenarios, a person can teach a robot
by simply demonstrating the task that the robot has to
perform. There are many issues that have to be addressed
regarding RLbI. It is desirable to avoid invasiveness and
controlled environments, the robot should count with return
channels that can provide on-line feedback for the human
teacher, it may be required to research methods for sharing
attention [4], etc. One of the main of these issues is the
translation from human to robot activities. This problem
is more important as the differences from human to robot
bodies grow [5]. Despite all these issues, the important
advantages of RLbI systems over other learning methods
[10] have moved many researchers in the last decade to
address the objective of providing social robots with RLbI
architectures [10][11][4][12][13]. These architectures will
allow social robots to perceive, recognize, learn and imitate
behaviours exhibited by human companions.

In this paper, a new RLbI architecture is proposed that
provides a social robot with the ability to learn and imitate
upper-body social gestures. This architecture, that is the
main topic of the first author’s Thesis [5], uses an interface
based on a pair of stereo cameras, and a model-based
perception component to capture human movements from
input image data. Perceived human motion is segmented
into discrete gestures and represented using features, that
are subsequently employed to recognize and learn gestures.
Finally, imitation is achieved by using a translation module
that combines different strategies. The rest of the paper is
organized as follows: Section II describes the proposed RLbI
system. Section III details the different components that
conforms the architecture. Section IV presents the results of
the experiments performed to test the system, while section V
discusses several key topics related with the system. Finally,
section VI concludes the paper and defines future research
lines.

II. SYSTEM OVERVIEW

There have been many proposals of RLbI architec-
tures in the last decade, due to the increasing interest in
autonomous agents, humanoid robots and social robotics
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[10][11][4][12][13]. These architectures differ in their ob-
jectives, considered perceptual inputs, number of modules,
levels of abstraction or structure. However, it has been
possible to identify some key components that are common
to these architectures. It is in the elements inside each
of these components, and the relations that are established
between these elements, where the differences between RLbI
architectures lie. A brief description of these components,
that are deeply explained in [14], is given below:

o Input. This component includes all the sensory inputs
that are available for the architecture. While visual input
is necessary to achieve imitation in RLbI scenarios,
some authors propose the use of additional perceptual
channels, such as auditive or proprioceptive -own state-
perception.

o Perception. The perception component contains all
modules that are used to extract useful information from
available perceptual channels.

+ Knowledge. The knowledge component represents the
memory of the social robot. This component contains all
elements that are used to store information units, both
learnt or preprogrammed. It also includes elements used
to process these data.

« Learning. Social robots work in everyday environments
where it is not possible to predict all possible situations
they may face. Thus, social robots are provided with
some learning mechanisms that allow them to adapt
and learn from these new situations. The learning com-
ponent is a key component of a RLbI architecture. It
mainly affects the knowledge component, adding new
items to the knowledge database, but also modifying
already stored items or deleting old ones.

o Motion generation. RLbI requires the social robot
to be able to imitate behaviours. Imitation involves
translating the perceived or learnt motion to the robot,
and generating a sequence of motion commands. The
motion generation component contains all elements that
are responsible of generating a motion output in the
robot.

e Output. Motion commands are received by this com-
ponent of the RLbI architecture, that uses the abilities
of the social robot to execute them.

In this paper a novel architecture based on these com-
ponents is proposed. This architecture captures, recognizes
and learns upper-body human gestures, and it is depicted
in Fig. 1. It is influenced by previous approaches, but it
also incorporates new elements. Thus, as many previous
RLDbI architectures [10][11][12], it is divided into two main
parts, one regarding perception, and the other action. It also
includes a filtering process in the perceptual component.
Finally, it relies on a database of known gestures to conform
the core of the knowledge component [4][10][11], as Fig. 1
depicts.

As commented above, the proposed architecture also
presents important differences respect to most previous pro-
posals. Thus, many of these proposals appeal for a unified
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representation of perception and action in the robot motion
space [10][11], following the idea that such a representation
is present in biological entities [15]. But biological observers
perform imitation and social learning from demonstrators of
the same species [9], or who are perceived as belonging to the
same species. Small children may find difficulties in learning
from imitation when the demonstrator is a machine [15].
It may be reasonable to suppose that the opposite situation
will find similar difficulties. Using the robot motion space to
represent perceived human motion constraints the perceptual
capabilities of the robot due to its motor limitations, as
the robot will not recognize gestures it can not imitate. In
this paper the idea of ’using a human model to perceive
human movements’ is proposed as an alternative to previous
approaches. It has the additional advantage that translation
-or retargeting- modules are executed only if imitation is
required.

The explicit presence of a retargeting module is another
contribution of the proposed architecture. It is considered
here that human and robot may be very different, and thus
translating motion from human to robot may become a
complex issue, that requires a careful design. Finally, it is
important to emphasize that the proposed RLbI architecture
has been designed not as a theoretical framework, but as a
system to be mounted in a real social robot. Thus, experi-
ments have been performed in real RLbI scenarios, in which
limited perception, uncontrolled environments and untrained
users are present.
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Proposed RLbI architecture.

III. COMPONENTS

The different components of the proposed RLbI architec-
ture have been implemented as detailed below.

A. Input and Perception

The input component for the proposed architecture is
composed by a pair of stereo cameras. These cameras take
colour images and disparity maps from the environment.
They will be typically mounted on the head of a social robot,
and in any case their baseline is set close to average human
eye-to-eye distance. This configuration allows the stereo
cameras to capture upper-body human motion at standard
social interaction distances, that usually vary from 1.5 to 2
meters [5].

Captured images are processed in the perception compo-
nent (Fig. 2), that extracts human pose from them. It can
be seen in Fig. 2 that the first step of this process is to
locate a human face that is close enough to the cameras.
The ’feature detection’ module performs this operation as
detailed in [5]. Once the face is detected, the motion of the
person begins to be captured. Face 3D position is employed
to extract human silhouettes from disparity maps [17], while
hands are detected as skin color regions in certain parts of
the silhouette. As depicted in Fig. 2, once the 3D positions
of the face and hands have been detected, these body parts
are tracked on-line by the tracking element depicted in Fig.
1, that also implements the ’inhibition of return’ mechanism
[16].

Disparity silhouettes and tracked 3D positions of head and
hands are the features used to estimate upper-body pose. A
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Fig. 2. Flow diagram of the perception component.

model-based human motion capture (HMC) algorithm is em-
ployed that firstly estimates torso flexion and rotation angles
from disparity silhouettes, using anthropometric relations
[17]. Once torso has been posed, the proposed algorithm uses
an analytic method based on inverse kinematics to obtain
valid arm poses from the 3D positions of the hands [18]. See
[5] for a complete description of the whole HMC system.

B. Knowledge

The knowledge component of the proposed RLbI architec-
ture contains the gestures the social robot has already learnt.
But before perceived motion can be compared against stored
gestures, it has to be segmented into discrete gestures. In this
paper this segmentation is based on dynamic time thresholds
[5]. Perceived discrete gestures are composed by sets of
3D trajectories followed by different body parts. In order to
achieve on-line recognition, these trajectories are translated
to a more efficient and compact representation. In this paper
a novel gesture representation is proposed that considers
two different types of features to characterize each gesture:
global features and local features. Global features are defined
against an external reference and thus they are more robust
against noise and outliers. The global features used in the
proposed system are simple absolute and relative motion
amplitudes. Local features, on the other hand, are based
on differential measures and are superior in discriminating
fine details of the trajectory [19]. The proposed architecture
uses sequences of dominant points as local features for
each trajectory. These dominant points are extracted from
the adaptive curvature functions associated to the perceived
trajectories, as detailed in [20].

Once gestures have been represented as sets of local and
global features, they are compared against the gestures stored
in the knowledge database of the social robot. This process is
deeply explained in [20], and can be summarized as follows:
Local features are compared using the Dynamic Time Warp-
ing (DTW) algorithm. Then, the resulting local distances are
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reinforced by a global similarity value, obtained by applying
analytic relations to the global features of compared gestures.
Thus, both local and global features are considered to obtain
the final distances, expressed as confidence values [5]. These
values indicate the degree of similarity between each gesture
in the knowledge database and the perceived gesture. They
will be further used in the learning component to decide
whether the gesture is recognized or not.

As Fig. 1 depicts, the whole representation and recognition
processes are performed in the human motion space. Thus,
even social robots which body is very different to the human
body will be able to correctly perceive, understand and learn
human gestures when using the proposed architecture.

The last element of this component is the retargeting
module. This module translates the resulting motion to the
robot motion space if imitation is required. The translation
process considers both end-effector positions and joint angle
values in a combined strategy, that tends to preserve the
former for location movements, and the latter for configured
movements [21][5]. As Fig. 1 depicts, the retargeting process
does not need to be executed if the robot is not going to
imitate the perceived motion.

C. Learning

The learning component of the proposed RLbI architecture
uses the confidence values, obtained in the recognition stage,
to add new gestures to the repertoire of the robot. The
dataflow of this component is depicted in Fig. 3. It can
be seen that learning is based on a double threshold. The
first threshold €2 allows to directly recognize gestures that
are very similar to a stored one (i.e. the biggest obtained
confidence value C;; is over €2). Recognized gestures do not
modify the knowledge database. On the other hand, as Fig. 3
shows, the second threshold w is relative. Gestures that do not
satisfy this second threshold are candidates to be included in
the repertoire as new gestures. Human supervision is required
when adding new gestures to the database. Besides, the first
experiments involving this algorithm showed that the first
steps in the learning process were critical, thus the amount
of human supervision was incremented in this stage of the
process (Fig. 3).

D. Motion generation and Output

The retargeted motion is not directly sent to the motors of
the robot. A virtual model of the robot is used before to check
that the resulting poses are valid. The robot model adopts
desired poses using the same algorithms employed in the
perception component to pose the human model. Once valid
poses have been obtained for the robot, they are sent to its
motor system, thus it is able to physically imitate perceived
or recognized gestures.

IV. EXPERIMENTAL RESULTS

The different components of the proposed RLbI archi-
tecture were individually tested before integrating them in
the complete system. The setup and results of these prior
experiments are briefly commented below:
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o« The HMC system conformed by the input and per-
ception components was quantitatively tested in a set
of experiments, in which a certain human motion was
perceived using both the proposed vision-based HMC
system and a Codamotion CX1 HMC system from
Charnwood Dynamics Ltd., based on active markers.
The latter was used to obtain a reliable ground-truth [5].
Stereo images for the proposed system were captured
using a STH-DCSG-VAR-C stereo pair provided by
Videre Design. Extensive tests were conducted, in which
the positions of the real markers used by the Codamo-
tion CX1 system were compared against the positions
of virtual markers, located on the virtual human model
used by the proposed vision-based HMC system. Table
I depicts obtained errors [5].

TABLE I
TRACKING ERRORS AVERAGED OVER 5300 FRAMES.

Marker Left Shoulder Left Elbow Left Hand
Mean Error (cm) 5.74 12.53 11.51
Standard Deviation (cm) 3.13 6.06 6.55
Marker Right Shoulder | Right Elbow | Right Hand
Mean Error (cm) 6.72 12.41 11.47
Standard Deviation (cm) 5.01 6.94 7.63
Marker Left Head Abdomen Right Head
Mean Error (cm) 7.03 7.76 6.51
Standard Deviation (cm) 5.41 1.18 5.13

o Perceived motion is segmented into discrete gestures in

the knowledge component. Then, this component firstly
represents gestures in an efficient way and then uses
these representations to match perceived and stored ges-
tures. In order to independently test the representation
and recognition modules, it was decided to use reliable
motion data provided by the Codamotion CX1 system to
fed the knowledge component. Extraction of features as
dominant points of the adaptive curvature functions was
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compared against other representation methods, such
as PCA, CSS or extraction of dominant points from
fixed curvatures. The proposed method outperformed
these approaches, as detailed in [20]. As commented
above, distances between local features have been com-
puted using DTW. This algorithm was compared against
different dynamic programming techniques [20]. The
results of these comparisons showed that DTW offered
better recognition rates, and it was also more robust
against outliers and noise.

The combined retargeting strategy was also tested for
both location and configured movements [21]. The re-
sults of these tests showed that it was able to adequately
adapt to each particular situation. They were also useful
to detect some undesired limitations in the robot arm
motion, that will be corrected in further implementa-
tions [21].

« Finally, the learning algorithm based on double thresh-
old was firstly tested over gestures captured using
the Codamotion CX1 system. Obtained results were
adequate, and emphasize the importance of human
supervision in the first steps of the learning process.

After these experiments, the complete RLbI architecture
was integrated and tested in real human-robot interaction
scenarios. These scenarios involved dynamic, uncontrolled
environments, untrained users, limited perception and on-line
response. Unfortunately NOMADA, the social robot that is
being developed in our research group [5], is not yet finished.
However, prior versions of its perceptual system and one of
its arms are available. A complete virtual model of this robot
is also available. Thus, in the experiments of the complete
system, stereo images are captured using the same cameras
detailed before. The available arm of the robot imitates the
movements of the human right arm. The retargeting module
and the motion generation component, on the other hand,
use the virtual model of the complete robot to check validity
of imitated upper-body pose considering real joint limits and
collisions.

Experiments use a dataset consisting of 53 upper-body
gestures performed by six different people. For each of these
gestures, the motion of the left and right hands is recorded
at an average sampling rate of 15 Hz. The average amount
of samples per gesture is 103.5. The gestures in the dataset
are different executions of 8 upper-body gestures, that are
commonly found in social interaction scenarios. The people
who perform the previously detailed gestures stand in front
of the vision-based system at a distance from 1.30 to 1.80
meters. No specific clothes are used to perform the experi-
ments. Tests are performed in real indoor environments, that
change dynamically. Thus, lighting changes, people walking
around during experiments or environment variations (i.e.
chairs or objects moved from one place to another) occur
during the execution of the gestures. Two sets of experiments
are conducted. In the latter the robot has no prior knowledge
about performed gestures. The results of these experiments
show that the robot is correctly able to recognize, imitate



and learn upper-body human gestures in these scenarios [5].

V. DISCUSSION

After experiments conducted in real RLbI scenarios, it is
clear that the main limitation of the proposed system lies in
its perceptual capabilities. On-line response imposes the use
of a limited resolution. Thus, it is currently not possible to
capture face expressions or detailed finger movements. But
even although higher resolutions may be possible, limited
field of view, noisy images and, specially, disparity errors
drastically affect the quality of perceived motion [8]. Average
errors listed in Table I are in the range of the pixel errors
associated to the stereo cameras. Significantly, these errors
are higher as the tracked item approach image borders, due to
lens distortion, the pin-hole model used for the cameras and
the perspective effects. As discussed in [5], it may be very
difficult to improve HMC results by modifying the perceptual
component, that behaves correctly if perceived data are
accurate. It is in the input component where modifications
may be more useful. Thus, the use of better cameras or
lenses, but also the inclusion of additional sensory inputs,
different from vision (e.g. speech, laser range finders, etc.),
should be considered in order to improve the perceptual
capabilities of the social robot.

Definitions for social robot [3][4][5] include agents that
may be very different from people, thus it is important to
consider RLbI architectures in which these differences are
explicitly considered. As detailed above, one of the main
contributions of the proposed system is the execution of the
gesture representation, recognition and learning processes in
the human motion space, while the retargeting module only
translates motion to the robot body if imitation is required.
Experimental results show that this architecture, that makes
perception independent from the particular motor abilities of
the robot, is able to efficiently produce adequate results [5].
While it may be argued that RLbI is simply not possible
in agents that are not able to imitate perceived motion to a
certain degree, in the proposed architecture a more practical
approach is followed, that provides a social robot with the
ability to capture human motion as accurately as possible,
regardless its physical body.

VI. CONCLUSIONS AND FUTURE WORKS

The main contribution of this paper is a vision-base gesture
recognition interface that can be integrated in a social robot.
This interface works on-line, it is non-invasive and can
be used in uncontrolled environments, and by untrained
users. Conducted tests show that upper-body gestures can
be efficiently perceived, recognized and learnt using the
proposed architecture. Limitations detected in the stereo
vision system suggest that future work should mainly focus
on increasing the perceptual capabilities of the social robot,
most probably using multimodal interfaces. More precisely,
speech recognition should be incorporated to the robot as it
is a key element in most social interactions. Other sensory
inputs such as laser range finders or infrared sensors should
also be considered. Finally, the complete RLbI architecture
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will be integrated in a more complex system, that will include
higher level decision layers [5].
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